Metamath Proof Explorer


Theorem etransclem19

Description: The N -th derivative of H is 0 if N is large enough. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem19.s φ S
etransclem19.x φ X TopOpen fld 𝑡 S
etransclem19.p φ P
etransclem19.1 H = j 0 M x X x j if j = 0 P 1 P
etransclem19.J φ J 0 M
etransclem19.n φ N
etransclem19.7 φ if J = 0 P 1 P < N
Assertion etransclem19 φ S D n H J N = x X 0

Proof

Step Hyp Ref Expression
1 etransclem19.s φ S
2 etransclem19.x φ X TopOpen fld 𝑡 S
3 etransclem19.p φ P
4 etransclem19.1 H = j 0 M x X x j if j = 0 P 1 P
5 etransclem19.J φ J 0 M
6 etransclem19.n φ N
7 etransclem19.7 φ if J = 0 P 1 P < N
8 0red φ 0
9 6 zred φ N
10 nnm1nn0 P P 1 0
11 3 10 syl φ P 1 0
12 11 nn0red φ P 1
13 3 nnred φ P
14 12 13 ifcld φ if J = 0 P 1 P
15 11 nn0ge0d φ 0 P 1
16 15 adantr φ J = 0 0 P 1
17 iftrue J = 0 if J = 0 P 1 P = P 1
18 17 eqcomd J = 0 P 1 = if J = 0 P 1 P
19 18 adantl φ J = 0 P 1 = if J = 0 P 1 P
20 16 19 breqtrd φ J = 0 0 if J = 0 P 1 P
21 3 nnnn0d φ P 0
22 21 nn0ge0d φ 0 P
23 22 adantr φ ¬ J = 0 0 P
24 iffalse ¬ J = 0 if J = 0 P 1 P = P
25 24 eqcomd ¬ J = 0 P = if J = 0 P 1 P
26 25 adantl φ ¬ J = 0 P = if J = 0 P 1 P
27 23 26 breqtrd φ ¬ J = 0 0 if J = 0 P 1 P
28 20 27 pm2.61dan φ 0 if J = 0 P 1 P
29 8 14 9 28 7 lelttrd φ 0 < N
30 8 9 29 ltled φ 0 N
31 elnn0z N 0 N 0 N
32 6 30 31 sylanbrc φ N 0
33 1 2 3 4 5 32 etransclem17 φ S D n H J N = x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N
34 7 iftrued φ if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N = 0
35 34 mpteq2dv φ x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N = x X 0
36 33 35 eqtrd φ S D n H J N = x X 0