Metamath Proof Explorer


Theorem etransclem19

Description: The N -th derivative of H is 0 if N is large enough. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem19.s φS
etransclem19.x φXTopOpenfld𝑡S
etransclem19.p φP
etransclem19.1 H=j0MxXxjifj=0P1P
etransclem19.J φJ0M
etransclem19.n φN
etransclem19.7 φifJ=0P1P<N
Assertion etransclem19 φSDnHJN=xX0

Proof

Step Hyp Ref Expression
1 etransclem19.s φS
2 etransclem19.x φXTopOpenfld𝑡S
3 etransclem19.p φP
4 etransclem19.1 H=j0MxXxjifj=0P1P
5 etransclem19.J φJ0M
6 etransclem19.n φN
7 etransclem19.7 φifJ=0P1P<N
8 0red φ0
9 6 zred φN
10 nnm1nn0 PP10
11 3 10 syl φP10
12 11 nn0red φP1
13 3 nnred φP
14 12 13 ifcld φifJ=0P1P
15 11 nn0ge0d φ0P1
16 15 adantr φJ=00P1
17 iftrue J=0ifJ=0P1P=P1
18 17 eqcomd J=0P1=ifJ=0P1P
19 18 adantl φJ=0P1=ifJ=0P1P
20 16 19 breqtrd φJ=00ifJ=0P1P
21 3 nnnn0d φP0
22 21 nn0ge0d φ0P
23 22 adantr φ¬J=00P
24 iffalse ¬J=0ifJ=0P1P=P
25 24 eqcomd ¬J=0P=ifJ=0P1P
26 25 adantl φ¬J=0P=ifJ=0P1P
27 23 26 breqtrd φ¬J=00ifJ=0P1P
28 20 27 pm2.61dan φ0ifJ=0P1P
29 8 14 9 28 7 lelttrd φ0<N
30 8 9 29 ltled φ0N
31 elnn0z N0N0N
32 6 30 31 sylanbrc φN0
33 1 2 3 4 5 32 etransclem17 φSDnHJN=xXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN
34 7 iftrued φififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN=0
35 34 mpteq2dv φxXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN=xX0
36 33 35 eqtrd φSDnHJN=xX0