Metamath Proof Explorer


Theorem etransclem20

Description: H is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem20.s φ S
etransclem20.x φ X TopOpen fld 𝑡 S
etransclem20.p φ P
etransclem20.h H = j 0 M x X x j if j = 0 P 1 P
etransclem20.J φ J 0 M
etransclem20.n φ N 0
Assertion etransclem20 φ S D n H J N : X

Proof

Step Hyp Ref Expression
1 etransclem20.s φ S
2 etransclem20.x φ X TopOpen fld 𝑡 S
3 etransclem20.p φ P
4 etransclem20.h H = j 0 M x X x j if j = 0 P 1 P
5 etransclem20.J φ J 0 M
6 etransclem20.n φ N 0
7 iftrue if J = 0 P 1 P < N if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N = 0
8 0cnd if J = 0 P 1 P < N 0
9 7 8 eqeltrd if J = 0 P 1 P < N if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N
10 9 adantl φ x X if J = 0 P 1 P < N if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N
11 simpr φ x X ¬ if J = 0 P 1 P < N ¬ if J = 0 P 1 P < N
12 11 iffalsed φ x X ¬ if J = 0 P 1 P < N if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N = if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N
13 nnm1nn0 P P 1 0
14 3 13 syl φ P 1 0
15 3 nnnn0d φ P 0
16 14 15 ifcld φ if J = 0 P 1 P 0
17 16 faccld φ if J = 0 P 1 P !
18 17 nncnd φ if J = 0 P 1 P !
19 18 adantr φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P !
20 16 nn0zd φ if J = 0 P 1 P
21 6 nn0zd φ N
22 20 21 zsubcld φ if J = 0 P 1 P N
23 22 adantr φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P N
24 6 nn0red φ N
25 24 adantr φ ¬ if J = 0 P 1 P < N N
26 16 nn0red φ if J = 0 P 1 P
27 26 adantr φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P
28 simpr φ ¬ if J = 0 P 1 P < N ¬ if J = 0 P 1 P < N
29 25 27 28 nltled φ ¬ if J = 0 P 1 P < N N if J = 0 P 1 P
30 27 25 subge0d φ ¬ if J = 0 P 1 P < N 0 if J = 0 P 1 P N N if J = 0 P 1 P
31 29 30 mpbird φ ¬ if J = 0 P 1 P < N 0 if J = 0 P 1 P N
32 elnn0z if J = 0 P 1 P N 0 if J = 0 P 1 P N 0 if J = 0 P 1 P N
33 23 31 32 sylanbrc φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P N 0
34 33 faccld φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P N !
35 34 nncnd φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P N !
36 34 nnne0d φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P N ! 0
37 19 35 36 divcld φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P ! if J = 0 P 1 P N !
38 37 adantlr φ x X ¬ if J = 0 P 1 P < N if J = 0 P 1 P ! if J = 0 P 1 P N !
39 1 2 dvdmsscn φ X
40 39 sselda φ x X x
41 elfzelz J 0 M J
42 41 zcnd J 0 M J
43 5 42 syl φ J
44 43 adantr φ x X J
45 40 44 subcld φ x X x J
46 45 adantr φ x X ¬ if J = 0 P 1 P < N x J
47 33 adantlr φ x X ¬ if J = 0 P 1 P < N if J = 0 P 1 P N 0
48 46 47 expcld φ x X ¬ if J = 0 P 1 P < N x J if J = 0 P 1 P N
49 38 48 mulcld φ x X ¬ if J = 0 P 1 P < N if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N
50 12 49 eqeltrd φ x X ¬ if J = 0 P 1 P < N if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N
51 10 50 pm2.61dan φ x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N
52 eqid x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N = x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N
53 51 52 fmptd φ x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N : X
54 1 2 3 4 5 6 etransclem17 φ S D n H J N = x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N
55 54 feq1d φ S D n H J N : X x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N : X
56 53 55 mpbird φ S D n H J N : X