Metamath Proof Explorer


Theorem etransclem21

Description: The N -th derivative of H applied to Y . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem21.s φ S
etransclem21.x φ X TopOpen fld 𝑡 S
etransclem21.p φ P
etransclem21.h H = j 0 M x X x j if j = 0 P 1 P
etransclem21.j φ J 0 M
etransclem21.n φ N 0
etransclem21.y φ Y X
Assertion etransclem21 φ S D n H J N Y = if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! Y J if J = 0 P 1 P N

Proof

Step Hyp Ref Expression
1 etransclem21.s φ S
2 etransclem21.x φ X TopOpen fld 𝑡 S
3 etransclem21.p φ P
4 etransclem21.h H = j 0 M x X x j if j = 0 P 1 P
5 etransclem21.j φ J 0 M
6 etransclem21.n φ N 0
7 etransclem21.y φ Y X
8 1 2 3 4 5 6 etransclem17 φ S D n H J N = x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N
9 oveq1 x = Y x J = Y J
10 9 oveq1d x = Y x J if J = 0 P 1 P N = Y J if J = 0 P 1 P N
11 10 oveq2d x = Y if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N = if J = 0 P 1 P ! if J = 0 P 1 P N ! Y J if J = 0 P 1 P N
12 11 ifeq2d x = Y if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N = if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! Y J if J = 0 P 1 P N
13 12 adantl φ x = Y if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N = if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! Y J if J = 0 P 1 P N
14 0cnd φ if J = 0 P 1 P < N 0
15 nnm1nn0 P P 1 0
16 3 15 syl φ P 1 0
17 3 nnnn0d φ P 0
18 16 17 ifcld φ if J = 0 P 1 P 0
19 18 faccld φ if J = 0 P 1 P !
20 19 nncnd φ if J = 0 P 1 P !
21 20 adantr φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P !
22 18 nn0zd φ if J = 0 P 1 P
23 6 nn0zd φ N
24 22 23 zsubcld φ if J = 0 P 1 P N
25 24 adantr φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P N
26 6 nn0red φ N
27 26 adantr φ ¬ if J = 0 P 1 P < N N
28 18 nn0red φ if J = 0 P 1 P
29 28 adantr φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P
30 simpr φ ¬ if J = 0 P 1 P < N ¬ if J = 0 P 1 P < N
31 27 29 30 nltled φ ¬ if J = 0 P 1 P < N N if J = 0 P 1 P
32 29 27 subge0d φ ¬ if J = 0 P 1 P < N 0 if J = 0 P 1 P N N if J = 0 P 1 P
33 31 32 mpbird φ ¬ if J = 0 P 1 P < N 0 if J = 0 P 1 P N
34 elnn0z if J = 0 P 1 P N 0 if J = 0 P 1 P N 0 if J = 0 P 1 P N
35 25 33 34 sylanbrc φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P N 0
36 35 faccld φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P N !
37 36 nncnd φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P N !
38 36 nnne0d φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P N ! 0
39 21 37 38 divcld φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P ! if J = 0 P 1 P N !
40 1 2 dvdmsscn φ X
41 40 7 sseldd φ Y
42 5 elfzelzd φ J
43 42 zcnd φ J
44 41 43 subcld φ Y J
45 44 adantr φ ¬ if J = 0 P 1 P < N Y J
46 45 35 expcld φ ¬ if J = 0 P 1 P < N Y J if J = 0 P 1 P N
47 39 46 mulcld φ ¬ if J = 0 P 1 P < N if J = 0 P 1 P ! if J = 0 P 1 P N ! Y J if J = 0 P 1 P N
48 14 47 ifclda φ if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! Y J if J = 0 P 1 P N
49 8 13 7 48 fvmptd φ S D n H J N Y = if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! Y J if J = 0 P 1 P N