Metamath Proof Explorer


Theorem etransclem23

Description: This is the claim proof in Juillerat p. 14 (but in our proof, Stirling's approximation is not used). (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem23.a φ A : 0
etransclem23.l L = j = 0 M A j e j 0 j e x F x dx
etransclem23.k K = L P 1 !
etransclem23.p φ P
etransclem23.m φ M
etransclem23.f F = x x P 1 j = 1 M x j P
etransclem23.lt1 φ j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 ! < 1
Assertion etransclem23 φ K < 1

Proof

Step Hyp Ref Expression
1 etransclem23.a φ A : 0
2 etransclem23.l L = j = 0 M A j e j 0 j e x F x dx
3 etransclem23.k K = L P 1 !
4 etransclem23.p φ P
5 etransclem23.m φ M
6 etransclem23.f F = x x P 1 j = 1 M x j P
7 etransclem23.lt1 φ j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 ! < 1
8 2 oveq1i L P 1 ! = j = 0 M A j e j 0 j e x F x dx P 1 !
9 3 8 eqtri K = j = 0 M A j e j 0 j e x F x dx P 1 !
10 9 fveq2i K = j = 0 M A j e j 0 j e x F x dx P 1 !
11 10 a1i φ K = j = 0 M A j e j 0 j e x F x dx P 1 !
12 fzfid φ 0 M Fin
13 1 adantr φ j 0 M A : 0
14 elfznn0 j 0 M j 0
15 14 adantl φ j 0 M j 0
16 13 15 ffvelcdmd φ j 0 M A j
17 16 zcnd φ j 0 M A j
18 ere e
19 18 recni e
20 19 a1i φ j 0 M e
21 elfzelz j 0 M j
22 21 zcnd j 0 M j
23 22 adantl φ j 0 M j
24 20 23 cxpcld φ j 0 M e j
25 17 24 mulcld φ j 0 M A j e j
26 19 a1i φ j 0 M x 0 j e
27 elioore x 0 j x
28 27 recnd x 0 j x
29 28 adantl φ j 0 M x 0 j x
30 29 negcld φ j 0 M x 0 j x
31 26 30 cxpcld φ j 0 M x 0 j e x
32 ax-resscn
33 32 a1i φ
34 33 4 6 etransclem8 φ F :
35 34 adantr φ x 0 j F :
36 27 adantl φ x 0 j x
37 35 36 ffvelcdmd φ x 0 j F x
38 37 adantlr φ j 0 M x 0 j F x
39 31 38 mulcld φ j 0 M x 0 j e x F x
40 reelprrecn
41 40 a1i φ j 0 M
42 reopn topGen ran .
43 tgioo4 topGen ran . = TopOpen fld 𝑡
44 42 43 eleqtri TopOpen fld 𝑡
45 44 a1i φ j 0 M TopOpen fld 𝑡
46 4 adantr φ j 0 M P
47 5 nnnn0d φ M 0
48 47 adantr φ j 0 M M 0
49 etransclem6 x x P 1 j = 1 M x j P = y y P 1 h = 1 M y h P
50 etransclem6 y y P 1 h = 1 M y h P = x x P 1 k = 1 M x k P
51 6 49 50 3eqtri F = x x P 1 k = 1 M x k P
52 0red φ j 0 M 0
53 21 zred j 0 M j
54 53 adantl φ j 0 M j
55 41 45 46 48 51 52 54 etransclem18 φ j 0 M x 0 j e x F x 𝐿 1
56 39 55 itgcl φ j 0 M 0 j e x F x dx
57 25 56 mulcld φ j 0 M A j e j 0 j e x F x dx
58 12 57 fsumcl φ j = 0 M A j e j 0 j e x F x dx
59 nnm1nn0 P P 1 0
60 4 59 syl φ P 1 0
61 60 faccld φ P 1 !
62 61 nncnd φ P 1 !
63 61 nnne0d φ P 1 ! 0
64 58 62 63 absdivd φ j = 0 M A j e j 0 j e x F x dx P 1 ! = j = 0 M A j e j 0 j e x F x dx P 1 !
65 61 nnred φ P 1 !
66 61 nnnn0d φ P 1 ! 0
67 66 nn0ge0d φ 0 P 1 !
68 65 67 absidd φ P 1 ! = P 1 !
69 68 oveq2d φ j = 0 M A j e j 0 j e x F x dx P 1 ! = j = 0 M A j e j 0 j e x F x dx P 1 !
70 11 64 69 3eqtrd φ K = j = 0 M A j e j 0 j e x F x dx P 1 !
71 2 58 eqeltrid φ L
72 71 62 63 divcld φ L P 1 !
73 3 72 eqeltrid φ K
74 73 abscld φ K
75 70 74 eqeltrrd φ j = 0 M A j e j 0 j e x F x dx P 1 !
76 5 nnred φ M
77 4 nnnn0d φ P 0
78 76 77 reexpcld φ M P
79 peano2nn0 M 0 M + 1 0
80 47 79 syl φ M + 1 0
81 78 80 reexpcld φ M P M + 1
82 81 recnd φ M P M + 1
83 5 nncnd φ M
84 82 83 mulcomd φ M P M + 1 M = M M P M + 1
85 4 nncnd φ P
86 1cnd φ 1
87 85 86 npcand φ P - 1 + 1 = P
88 87 eqcomd φ P = P - 1 + 1
89 88 oveq2d φ M M + 1 P = M M + 1 P - 1 + 1
90 80 nn0cnd φ M + 1
91 90 85 mulcomd φ M + 1 P = P M + 1
92 91 oveq2d φ M M + 1 P = M P M + 1
93 83 77 80 expmuld φ M M + 1 P = M M + 1 P
94 83 80 77 expmuld φ M P M + 1 = M P M + 1
95 92 93 94 3eqtr3d φ M M + 1 P = M P M + 1
96 76 80 reexpcld φ M M + 1
97 96 recnd φ M M + 1
98 97 60 expp1d φ M M + 1 P - 1 + 1 = M M + 1 P 1 M M + 1
99 89 95 98 3eqtr3d φ M P M + 1 = M M + 1 P 1 M M + 1
100 99 oveq2d φ M M P M + 1 = M M M + 1 P 1 M M + 1
101 97 60 expcld φ M M + 1 P 1
102 83 101 97 mul12d φ M M M + 1 P 1 M M + 1 = M M + 1 P 1 M M M + 1
103 83 97 mulcld φ M M M + 1
104 101 103 mulcomd φ M M + 1 P 1 M M M + 1 = M M M + 1 M M + 1 P 1
105 102 104 eqtrd φ M M M + 1 P 1 M M + 1 = M M M + 1 M M + 1 P 1
106 84 100 105 3eqtrd φ M P M + 1 M = M M M + 1 M M + 1 P 1
107 106 adantr φ j 0 M M P M + 1 M = M M M + 1 M M + 1 P 1
108 107 oveq2d φ j 0 M A j e j M P M + 1 M = A j e j M M M + 1 M M + 1 P 1
109 25 abscld φ j 0 M A j e j
110 109 recnd φ j 0 M A j e j
111 103 adantr φ j 0 M M M M + 1
112 101 adantr φ j 0 M M M + 1 P 1
113 110 111 112 mulassd φ j 0 M A j e j M M M + 1 M M + 1 P 1 = A j e j M M M + 1 M M + 1 P 1
114 108 113 eqtr4d φ j 0 M A j e j M P M + 1 M = A j e j M M M + 1 M M + 1 P 1
115 114 sumeq2dv φ j = 0 M A j e j M P M + 1 M = j = 0 M A j e j M M M + 1 M M + 1 P 1
116 110 111 mulcld φ j 0 M A j e j M M M + 1
117 12 101 116 fsummulc1 φ j = 0 M A j e j M M M + 1 M M + 1 P 1 = j = 0 M A j e j M M M + 1 M M + 1 P 1
118 115 117 eqtr4d φ j = 0 M A j e j M P M + 1 M = j = 0 M A j e j M M M + 1 M M + 1 P 1
119 118 oveq1d φ j = 0 M A j e j M P M + 1 M P 1 ! = j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 !
120 12 116 fsumcl φ j = 0 M A j e j M M M + 1
121 120 101 62 63 divassd φ j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 ! = j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 !
122 119 121 eqtrd φ j = 0 M A j e j M P M + 1 M P 1 ! = j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 !
123 81 adantr φ j 0 M M P M + 1
124 76 adantr φ j 0 M M
125 123 124 remulcld φ j 0 M M P M + 1 M
126 109 125 remulcld φ j 0 M A j e j M P M + 1 M
127 12 126 fsumrecl φ j = 0 M A j e j M P M + 1 M
128 127 61 nndivred φ j = 0 M A j e j M P M + 1 M P 1 !
129 122 128 eqeltrrd φ j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 !
130 1red φ 1
131 58 abscld φ j = 0 M A j e j 0 j e x F x dx
132 61 nnrpd φ P 1 ! +
133 57 abscld φ j 0 M A j e j 0 j e x F x dx
134 12 133 fsumrecl φ j = 0 M A j e j 0 j e x F x dx
135 12 57 fsumabs φ j = 0 M A j e j 0 j e x F x dx j = 0 M A j e j 0 j e x F x dx
136 81 ad2antrr φ j 0 M x 0 j M P M + 1
137 ioombl 0 j dom vol
138 137 a1i φ j 0 M 0 j dom vol
139 0red j 0 M 0
140 elfzle1 j 0 M 0 j
141 volioo 0 j 0 j vol 0 j = j 0
142 139 53 140 141 syl3anc j 0 M vol 0 j = j 0
143 53 139 resubcld j 0 M j 0
144 142 143 eqeltrd j 0 M vol 0 j
145 144 adantl φ j 0 M vol 0 j
146 82 adantr φ j 0 M M P M + 1
147 iblconstmpt 0 j dom vol vol 0 j M P M + 1 x 0 j M P M + 1 𝐿 1
148 138 145 146 147 syl3anc φ j 0 M x 0 j M P M + 1 𝐿 1
149 136 148 itgrecl φ j 0 M 0 j M P M + 1 dx
150 109 149 remulcld φ j 0 M A j e j 0 j M P M + 1 dx
151 12 150 fsumrecl φ j = 0 M A j e j 0 j M P M + 1 dx
152 25 56 absmuld φ j 0 M A j e j 0 j e x F x dx = A j e j 0 j e x F x dx
153 56 abscld φ j 0 M 0 j e x F x dx
154 25 absge0d φ j 0 M 0 A j e j
155 39 abscld φ j 0 M x 0 j e x F x
156 39 55 iblabs φ j 0 M x 0 j e x F x 𝐿 1
157 155 156 itgrecl φ j 0 M 0 j e x F x dx
158 39 55 itgabs φ j 0 M 0 j e x F x dx 0 j e x F x dx
159 31 38 absmuld φ j 0 M x 0 j e x F x = e x F x
160 31 abscld φ j 0 M x 0 j e x
161 1red φ j 0 M x 0 j 1
162 38 abscld φ j 0 M x 0 j F x
163 31 absge0d φ j 0 M x 0 j 0 e x
164 38 absge0d φ j 0 M x 0 j 0 F x
165 18 a1i x 0 j e
166 0re 0
167 epos 0 < e
168 166 18 167 ltleii 0 e
169 168 a1i x 0 j 0 e
170 27 renegcld x 0 j x
171 165 169 170 recxpcld x 0 j e x
172 165 169 170 cxpge0d x 0 j 0 e x
173 171 172 absidd x 0 j e x = e x
174 173 adantl j 0 M x 0 j e x = e x
175 171 adantl j 0 M x 0 j e x
176 1red j 0 M x 0 j 1
177 0xr 0 *
178 177 a1i j 0 M x 0 j 0 *
179 53 rexrd j 0 M j *
180 179 adantr j 0 M x 0 j j *
181 simpr j 0 M x 0 j x 0 j
182 ioogtlb 0 * j * x 0 j 0 < x
183 178 180 181 182 syl3anc j 0 M x 0 j 0 < x
184 27 adantl j 0 M x 0 j x
185 184 lt0neg2d j 0 M x 0 j 0 < x x < 0
186 183 185 mpbid j 0 M x 0 j x < 0
187 18 a1i j 0 M x 0 j e
188 1lt2 1 < 2
189 egt2lt3 2 < e e < 3
190 189 simpli 2 < e
191 1re 1
192 2re 2
193 191 192 18 lttri 1 < 2 2 < e 1 < e
194 188 190 193 mp2an 1 < e
195 194 a1i j 0 M x 0 j 1 < e
196 170 adantl j 0 M x 0 j x
197 0red j 0 M x 0 j 0
198 187 195 196 197 cxpltd j 0 M x 0 j x < 0 e x < e 0
199 186 198 mpbid j 0 M x 0 j e x < e 0
200 cxp0 e e 0 = 1
201 19 200 mp1i j 0 M x 0 j e 0 = 1
202 199 201 breqtrd j 0 M x 0 j e x < 1
203 175 176 202 ltled j 0 M x 0 j e x 1
204 174 203 eqbrtrd j 0 M x 0 j e x 1
205 204 adantll φ j 0 M x 0 j e x 1
206 32 a1i φ j 0 M x 0 j
207 4 ad2antrr φ j 0 M x 0 j P
208 47 ad2antrr φ j 0 M x 0 j M 0
209 6 49 eqtri F = y y P 1 h = 1 M y h P
210 27 adantl φ j 0 M x 0 j x
211 206 207 208 209 210 etransclem13 φ j 0 M x 0 j F x = h = 0 M x h if h = 0 P 1 P
212 211 fveq2d φ j 0 M x 0 j F x = h = 0 M x h if h = 0 P 1 P
213 nn0uz 0 = 0
214 27 adantr x 0 j h 0 x
215 nn0re h 0 h
216 215 adantl x 0 j h 0 h
217 214 216 resubcld x 0 j h 0 x h
218 217 adantll φ j 0 M x 0 j h 0 x h
219 60 77 ifcld φ if h = 0 P 1 P 0
220 219 ad3antrrr φ j 0 M x 0 j h 0 if h = 0 P 1 P 0
221 218 220 reexpcld φ j 0 M x 0 j h 0 x h if h = 0 P 1 P
222 221 recnd φ j 0 M x 0 j h 0 x h if h = 0 P 1 P
223 213 208 222 fprodabs φ j 0 M x 0 j h = 0 M x h if h = 0 P 1 P = h = 0 M x h if h = 0 P 1 P
224 elfznn0 h 0 M h 0
225 28 adantr x 0 j h 0 x
226 nn0cn h 0 h
227 226 adantl x 0 j h 0 h
228 225 227 subcld x 0 j h 0 x h
229 228 adantll φ j 0 M x 0 j h 0 x h
230 224 229 sylan2 φ j 0 M x 0 j h 0 M x h
231 219 ad3antrrr φ j 0 M x 0 j h 0 M if h = 0 P 1 P 0
232 230 231 absexpd φ j 0 M x 0 j h 0 M x h if h = 0 P 1 P = x h if h = 0 P 1 P
233 232 prodeq2dv φ j 0 M x 0 j h = 0 M x h if h = 0 P 1 P = h = 0 M x h if h = 0 P 1 P
234 212 223 233 3eqtrd φ j 0 M x 0 j F x = h = 0 M x h if h = 0 P 1 P
235 nfv h φ j 0 M x 0 j
236 fzfid φ j 0 M x 0 j 0 M Fin
237 224 228 sylan2 x 0 j h 0 M x h
238 237 abscld x 0 j h 0 M x h
239 238 adantll φ j 0 M x 0 j h 0 M x h
240 239 231 reexpcld φ j 0 M x 0 j h 0 M x h if h = 0 P 1 P
241 237 absge0d x 0 j h 0 M 0 x h
242 241 adantll φ j 0 M x 0 j h 0 M 0 x h
243 239 231 242 expge0d φ j 0 M x 0 j h 0 M 0 x h if h = 0 P 1 P
244 78 ad3antrrr φ j 0 M x 0 j h 0 M M P
245 76 ad3antrrr φ j 0 M x 0 j h 0 M M
246 245 231 reexpcld φ j 0 M x 0 j h 0 M M if h = 0 P 1 P
247 224 218 sylan2 φ j 0 M x 0 j h 0 M x h
248 28 adantr x 0 j h 0 M x
249 224 227 sylan2 x 0 j h 0 M h
250 248 249 negsubdi2d x 0 j h 0 M x h = h x
251 250 adantll φ j 0 M x 0 j h 0 M x h = h x
252 224 adantl φ j 0 M x 0 j h 0 M h 0
253 252 nn0red φ j 0 M x 0 j h 0 M h
254 0red φ j 0 M x 0 j h 0 M 0
255 210 adantr φ j 0 M x 0 j h 0 M x
256 elfzle2 h 0 M h M
257 256 adantl φ j 0 M x 0 j h 0 M h M
258 197 184 183 ltled j 0 M x 0 j 0 x
259 258 adantll φ j 0 M x 0 j 0 x
260 259 adantr φ j 0 M x 0 j h 0 M 0 x
261 253 254 245 255 257 260 le2subd φ j 0 M x 0 j h 0 M h x M 0
262 83 subid1d φ M 0 = M
263 262 ad3antrrr φ j 0 M x 0 j h 0 M M 0 = M
264 261 263 breqtrd φ j 0 M x 0 j h 0 M h x M
265 251 264 eqbrtrd φ j 0 M x 0 j h 0 M x h M
266 247 245 265 lenegcon1d φ j 0 M x 0 j h 0 M M x h
267 elfzel2 j 0 M M
268 267 zred j 0 M M
269 268 adantr j 0 M x 0 j M
270 53 adantr j 0 M x 0 j j
271 iooltub 0 * j * x 0 j x < j
272 178 180 181 271 syl3anc j 0 M x 0 j x < j
273 elfzle2 j 0 M j M
274 273 adantr j 0 M x 0 j j M
275 184 270 269 272 274 ltletrd j 0 M x 0 j x < M
276 184 269 275 ltled j 0 M x 0 j x M
277 276 adantll φ j 0 M x 0 j x M
278 277 adantr φ j 0 M x 0 j h 0 M x M
279 252 nn0ge0d φ j 0 M x 0 j h 0 M 0 h
280 255 254 245 253 278 279 le2subd φ j 0 M x 0 j h 0 M x h M 0
281 280 263 breqtrd φ j 0 M x 0 j h 0 M x h M
282 247 245 absled φ j 0 M x 0 j h 0 M x h M M x h x h M
283 266 281 282 mpbir2and φ j 0 M x 0 j h 0 M x h M
284 leexp1a x h M if h = 0 P 1 P 0 0 x h x h M x h if h = 0 P 1 P M if h = 0 P 1 P
285 239 245 231 242 283 284 syl32anc φ j 0 M x 0 j h 0 M x h if h = 0 P 1 P M if h = 0 P 1 P
286 5 nnge1d φ 1 M
287 286 ad3antrrr φ j 0 M x 0 j h 0 M 1 M
288 219 nn0zd φ if h = 0 P 1 P
289 77 nn0zd φ P
290 iftrue h = 0 if h = 0 P 1 P = P 1
291 290 adantl φ h = 0 if h = 0 P 1 P = P 1
292 4 nnred φ P
293 292 lem1d φ P 1 P
294 293 adantr φ h = 0 P 1 P
295 291 294 eqbrtrd φ h = 0 if h = 0 P 1 P P
296 iffalse ¬ h = 0 if h = 0 P 1 P = P
297 296 adantl φ ¬ h = 0 if h = 0 P 1 P = P
298 292 leidd φ P P
299 298 adantr φ ¬ h = 0 P P
300 297 299 eqbrtrd φ ¬ h = 0 if h = 0 P 1 P P
301 295 300 pm2.61dan φ if h = 0 P 1 P P
302 eluz2 P if h = 0 P 1 P if h = 0 P 1 P P if h = 0 P 1 P P
303 288 289 301 302 syl3anbrc φ P if h = 0 P 1 P
304 303 ad3antrrr φ j 0 M x 0 j h 0 M P if h = 0 P 1 P
305 245 287 304 leexp2ad φ j 0 M x 0 j h 0 M M if h = 0 P 1 P M P
306 240 246 244 285 305 letrd φ j 0 M x 0 j h 0 M x h if h = 0 P 1 P M P
307 235 236 240 243 244 306 fprodle φ j 0 M x 0 j h = 0 M x h if h = 0 P 1 P h = 0 M M P
308 78 recnd φ M P
309 fprodconst 0 M Fin M P h = 0 M M P = M P 0 M
310 12 308 309 syl2anc φ h = 0 M M P = M P 0 M
311 hashfz0 M 0 0 M = M + 1
312 47 311 syl φ 0 M = M + 1
313 312 oveq2d φ M P 0 M = M P M + 1
314 310 313 eqtrd φ h = 0 M M P = M P M + 1
315 314 ad2antrr φ j 0 M x 0 j h = 0 M M P = M P M + 1
316 307 315 breqtrd φ j 0 M x 0 j h = 0 M x h if h = 0 P 1 P M P M + 1
317 234 316 eqbrtrd φ j 0 M x 0 j F x M P M + 1
318 160 161 162 136 163 164 205 317 lemul12ad φ j 0 M x 0 j e x F x 1 M P M + 1
319 82 mullidd φ 1 M P M + 1 = M P M + 1
320 319 ad2antrr φ j 0 M x 0 j 1 M P M + 1 = M P M + 1
321 318 320 breqtrd φ j 0 M x 0 j e x F x M P M + 1
322 159 321 eqbrtrd φ j 0 M x 0 j e x F x M P M + 1
323 156 148 155 136 322 itgle φ j 0 M 0 j e x F x dx 0 j M P M + 1 dx
324 153 157 149 158 323 letrd φ j 0 M 0 j e x F x dx 0 j M P M + 1 dx
325 153 149 109 154 324 lemul2ad φ j 0 M A j e j 0 j e x F x dx A j e j 0 j M P M + 1 dx
326 152 325 eqbrtrd φ j 0 M A j e j 0 j e x F x dx A j e j 0 j M P M + 1 dx
327 12 133 150 326 fsumle φ j = 0 M A j e j 0 j e x F x dx j = 0 M A j e j 0 j M P M + 1 dx
328 itgconst 0 j dom vol vol 0 j M P M + 1 0 j M P M + 1 dx = M P M + 1 vol 0 j
329 138 145 146 328 syl3anc φ j 0 M 0 j M P M + 1 dx = M P M + 1 vol 0 j
330 47 nn0ge0d φ 0 M
331 76 77 330 expge0d φ 0 M P
332 78 80 331 expge0d φ 0 M P M + 1
333 332 adantr φ j 0 M 0 M P M + 1
334 22 subid1d j 0 M j 0 = j
335 142 334 eqtrd j 0 M vol 0 j = j
336 335 273 eqbrtrd j 0 M vol 0 j M
337 336 adantl φ j 0 M vol 0 j M
338 145 124 123 333 337 lemul2ad φ j 0 M M P M + 1 vol 0 j M P M + 1 M
339 329 338 eqbrtrd φ j 0 M 0 j M P M + 1 dx M P M + 1 M
340 149 125 109 154 339 lemul2ad φ j 0 M A j e j 0 j M P M + 1 dx A j e j M P M + 1 M
341 12 150 126 340 fsumle φ j = 0 M A j e j 0 j M P M + 1 dx j = 0 M A j e j M P M + 1 M
342 134 151 127 327 341 letrd φ j = 0 M A j e j 0 j e x F x dx j = 0 M A j e j M P M + 1 M
343 131 134 127 135 342 letrd φ j = 0 M A j e j 0 j e x F x dx j = 0 M A j e j M P M + 1 M
344 131 127 132 343 lediv1dd φ j = 0 M A j e j 0 j e x F x dx P 1 ! j = 0 M A j e j M P M + 1 M P 1 !
345 344 122 breqtrd φ j = 0 M A j e j 0 j e x F x dx P 1 ! j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 !
346 75 129 130 345 7 lelttrd φ j = 0 M A j e j 0 j e x F x dx P 1 ! < 1
347 70 346 eqbrtrd φ K < 1