Metamath Proof Explorer


Theorem etransclem23

Description: This is the claim proof in Juillerat p. 14 (but in our proof, Stirling's approximation is not used). (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem23.a φ A : 0
etransclem23.l L = j = 0 M A j e j 0 j e x F x dx
etransclem23.k K = L P 1 !
etransclem23.p φ P
etransclem23.m φ M
etransclem23.f F = x x P 1 j = 1 M x j P
etransclem23.lt1 φ j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 ! < 1
Assertion etransclem23 φ K < 1

Proof

Step Hyp Ref Expression
1 etransclem23.a φ A : 0
2 etransclem23.l L = j = 0 M A j e j 0 j e x F x dx
3 etransclem23.k K = L P 1 !
4 etransclem23.p φ P
5 etransclem23.m φ M
6 etransclem23.f F = x x P 1 j = 1 M x j P
7 etransclem23.lt1 φ j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 ! < 1
8 2 oveq1i L P 1 ! = j = 0 M A j e j 0 j e x F x dx P 1 !
9 3 8 eqtri K = j = 0 M A j e j 0 j e x F x dx P 1 !
10 9 fveq2i K = j = 0 M A j e j 0 j e x F x dx P 1 !
11 10 a1i φ K = j = 0 M A j e j 0 j e x F x dx P 1 !
12 fzfid φ 0 M Fin
13 1 adantr φ j 0 M A : 0
14 elfznn0 j 0 M j 0
15 14 adantl φ j 0 M j 0
16 13 15 ffvelrnd φ j 0 M A j
17 16 zcnd φ j 0 M A j
18 ere e
19 18 recni e
20 19 a1i φ j 0 M e
21 elfzelz j 0 M j
22 21 zcnd j 0 M j
23 22 adantl φ j 0 M j
24 20 23 cxpcld φ j 0 M e j
25 17 24 mulcld φ j 0 M A j e j
26 19 a1i φ j 0 M x 0 j e
27 elioore x 0 j x
28 27 recnd x 0 j x
29 28 adantl φ j 0 M x 0 j x
30 29 negcld φ j 0 M x 0 j x
31 26 30 cxpcld φ j 0 M x 0 j e x
32 ax-resscn
33 32 a1i φ
34 33 4 6 etransclem8 φ F :
35 34 adantr φ x 0 j F :
36 27 adantl φ x 0 j x
37 35 36 ffvelrnd φ x 0 j F x
38 37 adantlr φ j 0 M x 0 j F x
39 31 38 mulcld φ j 0 M x 0 j e x F x
40 reelprrecn
41 40 a1i φ j 0 M
42 reopn topGen ran .
43 eqid TopOpen fld = TopOpen fld
44 43 tgioo2 topGen ran . = TopOpen fld 𝑡
45 42 44 eleqtri TopOpen fld 𝑡
46 45 a1i φ j 0 M TopOpen fld 𝑡
47 4 adantr φ j 0 M P
48 5 nnnn0d φ M 0
49 48 adantr φ j 0 M M 0
50 etransclem6 x x P 1 j = 1 M x j P = y y P 1 h = 1 M y h P
51 etransclem6 y y P 1 h = 1 M y h P = x x P 1 k = 1 M x k P
52 6 50 51 3eqtri F = x x P 1 k = 1 M x k P
53 0red φ j 0 M 0
54 21 zred j 0 M j
55 54 adantl φ j 0 M j
56 41 46 47 49 52 53 55 etransclem18 φ j 0 M x 0 j e x F x 𝐿 1
57 39 56 itgcl φ j 0 M 0 j e x F x dx
58 25 57 mulcld φ j 0 M A j e j 0 j e x F x dx
59 12 58 fsumcl φ j = 0 M A j e j 0 j e x F x dx
60 nnm1nn0 P P 1 0
61 4 60 syl φ P 1 0
62 61 faccld φ P 1 !
63 62 nncnd φ P 1 !
64 62 nnne0d φ P 1 ! 0
65 59 63 64 absdivd φ j = 0 M A j e j 0 j e x F x dx P 1 ! = j = 0 M A j e j 0 j e x F x dx P 1 !
66 62 nnred φ P 1 !
67 62 nnnn0d φ P 1 ! 0
68 67 nn0ge0d φ 0 P 1 !
69 66 68 absidd φ P 1 ! = P 1 !
70 69 oveq2d φ j = 0 M A j e j 0 j e x F x dx P 1 ! = j = 0 M A j e j 0 j e x F x dx P 1 !
71 11 65 70 3eqtrd φ K = j = 0 M A j e j 0 j e x F x dx P 1 !
72 2 59 eqeltrid φ L
73 72 63 64 divcld φ L P 1 !
74 3 73 eqeltrid φ K
75 74 abscld φ K
76 71 75 eqeltrrd φ j = 0 M A j e j 0 j e x F x dx P 1 !
77 5 nnred φ M
78 4 nnnn0d φ P 0
79 77 78 reexpcld φ M P
80 peano2nn0 M 0 M + 1 0
81 48 80 syl φ M + 1 0
82 79 81 reexpcld φ M P M + 1
83 82 recnd φ M P M + 1
84 5 nncnd φ M
85 83 84 mulcomd φ M P M + 1 M = M M P M + 1
86 4 nncnd φ P
87 1cnd φ 1
88 86 87 npcand φ P - 1 + 1 = P
89 88 eqcomd φ P = P - 1 + 1
90 89 oveq2d φ M M + 1 P = M M + 1 P - 1 + 1
91 81 nn0cnd φ M + 1
92 91 86 mulcomd φ M + 1 P = P M + 1
93 92 oveq2d φ M M + 1 P = M P M + 1
94 84 78 81 expmuld φ M M + 1 P = M M + 1 P
95 84 81 78 expmuld φ M P M + 1 = M P M + 1
96 93 94 95 3eqtr3d φ M M + 1 P = M P M + 1
97 77 81 reexpcld φ M M + 1
98 97 recnd φ M M + 1
99 98 61 expp1d φ M M + 1 P - 1 + 1 = M M + 1 P 1 M M + 1
100 90 96 99 3eqtr3d φ M P M + 1 = M M + 1 P 1 M M + 1
101 100 oveq2d φ M M P M + 1 = M M M + 1 P 1 M M + 1
102 98 61 expcld φ M M + 1 P 1
103 84 102 98 mul12d φ M M M + 1 P 1 M M + 1 = M M + 1 P 1 M M M + 1
104 84 98 mulcld φ M M M + 1
105 102 104 mulcomd φ M M + 1 P 1 M M M + 1 = M M M + 1 M M + 1 P 1
106 103 105 eqtrd φ M M M + 1 P 1 M M + 1 = M M M + 1 M M + 1 P 1
107 85 101 106 3eqtrd φ M P M + 1 M = M M M + 1 M M + 1 P 1
108 107 adantr φ j 0 M M P M + 1 M = M M M + 1 M M + 1 P 1
109 108 oveq2d φ j 0 M A j e j M P M + 1 M = A j e j M M M + 1 M M + 1 P 1
110 25 abscld φ j 0 M A j e j
111 110 recnd φ j 0 M A j e j
112 104 adantr φ j 0 M M M M + 1
113 102 adantr φ j 0 M M M + 1 P 1
114 111 112 113 mulassd φ j 0 M A j e j M M M + 1 M M + 1 P 1 = A j e j M M M + 1 M M + 1 P 1
115 109 114 eqtr4d φ j 0 M A j e j M P M + 1 M = A j e j M M M + 1 M M + 1 P 1
116 115 sumeq2dv φ j = 0 M A j e j M P M + 1 M = j = 0 M A j e j M M M + 1 M M + 1 P 1
117 111 112 mulcld φ j 0 M A j e j M M M + 1
118 12 102 117 fsummulc1 φ j = 0 M A j e j M M M + 1 M M + 1 P 1 = j = 0 M A j e j M M M + 1 M M + 1 P 1
119 116 118 eqtr4d φ j = 0 M A j e j M P M + 1 M = j = 0 M A j e j M M M + 1 M M + 1 P 1
120 119 oveq1d φ j = 0 M A j e j M P M + 1 M P 1 ! = j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 !
121 12 117 fsumcl φ j = 0 M A j e j M M M + 1
122 121 102 63 64 divassd φ j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 ! = j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 !
123 120 122 eqtrd φ j = 0 M A j e j M P M + 1 M P 1 ! = j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 !
124 82 adantr φ j 0 M M P M + 1
125 77 adantr φ j 0 M M
126 124 125 remulcld φ j 0 M M P M + 1 M
127 110 126 remulcld φ j 0 M A j e j M P M + 1 M
128 12 127 fsumrecl φ j = 0 M A j e j M P M + 1 M
129 128 62 nndivred φ j = 0 M A j e j M P M + 1 M P 1 !
130 123 129 eqeltrrd φ j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 !
131 1red φ 1
132 59 abscld φ j = 0 M A j e j 0 j e x F x dx
133 62 nnrpd φ P 1 ! +
134 58 abscld φ j 0 M A j e j 0 j e x F x dx
135 12 134 fsumrecl φ j = 0 M A j e j 0 j e x F x dx
136 12 58 fsumabs φ j = 0 M A j e j 0 j e x F x dx j = 0 M A j e j 0 j e x F x dx
137 82 ad2antrr φ j 0 M x 0 j M P M + 1
138 ioombl 0 j dom vol
139 138 a1i φ j 0 M 0 j dom vol
140 0red j 0 M 0
141 elfzle1 j 0 M 0 j
142 volioo 0 j 0 j vol 0 j = j 0
143 140 54 141 142 syl3anc j 0 M vol 0 j = j 0
144 54 140 resubcld j 0 M j 0
145 143 144 eqeltrd j 0 M vol 0 j
146 145 adantl φ j 0 M vol 0 j
147 83 adantr φ j 0 M M P M + 1
148 iblconstmpt 0 j dom vol vol 0 j M P M + 1 x 0 j M P M + 1 𝐿 1
149 139 146 147 148 syl3anc φ j 0 M x 0 j M P M + 1 𝐿 1
150 137 149 itgrecl φ j 0 M 0 j M P M + 1 dx
151 110 150 remulcld φ j 0 M A j e j 0 j M P M + 1 dx
152 12 151 fsumrecl φ j = 0 M A j e j 0 j M P M + 1 dx
153 25 57 absmuld φ j 0 M A j e j 0 j e x F x dx = A j e j 0 j e x F x dx
154 57 abscld φ j 0 M 0 j e x F x dx
155 25 absge0d φ j 0 M 0 A j e j
156 39 abscld φ j 0 M x 0 j e x F x
157 39 56 iblabs φ j 0 M x 0 j e x F x 𝐿 1
158 156 157 itgrecl φ j 0 M 0 j e x F x dx
159 39 56 itgabs φ j 0 M 0 j e x F x dx 0 j e x F x dx
160 31 38 absmuld φ j 0 M x 0 j e x F x = e x F x
161 31 abscld φ j 0 M x 0 j e x
162 1red φ j 0 M x 0 j 1
163 38 abscld φ j 0 M x 0 j F x
164 31 absge0d φ j 0 M x 0 j 0 e x
165 38 absge0d φ j 0 M x 0 j 0 F x
166 18 a1i x 0 j e
167 0re 0
168 epos 0 < e
169 167 18 168 ltleii 0 e
170 169 a1i x 0 j 0 e
171 27 renegcld x 0 j x
172 166 170 171 recxpcld x 0 j e x
173 166 170 171 cxpge0d x 0 j 0 e x
174 172 173 absidd x 0 j e x = e x
175 174 adantl j 0 M x 0 j e x = e x
176 172 adantl j 0 M x 0 j e x
177 1red j 0 M x 0 j 1
178 0xr 0 *
179 178 a1i j 0 M x 0 j 0 *
180 54 rexrd j 0 M j *
181 180 adantr j 0 M x 0 j j *
182 simpr j 0 M x 0 j x 0 j
183 ioogtlb 0 * j * x 0 j 0 < x
184 179 181 182 183 syl3anc j 0 M x 0 j 0 < x
185 27 adantl j 0 M x 0 j x
186 185 lt0neg2d j 0 M x 0 j 0 < x x < 0
187 184 186 mpbid j 0 M x 0 j x < 0
188 18 a1i j 0 M x 0 j e
189 1lt2 1 < 2
190 egt2lt3 2 < e e < 3
191 190 simpli 2 < e
192 1re 1
193 2re 2
194 192 193 18 lttri 1 < 2 2 < e 1 < e
195 189 191 194 mp2an 1 < e
196 195 a1i j 0 M x 0 j 1 < e
197 171 adantl j 0 M x 0 j x
198 0red j 0 M x 0 j 0
199 188 196 197 198 cxpltd j 0 M x 0 j x < 0 e x < e 0
200 187 199 mpbid j 0 M x 0 j e x < e 0
201 cxp0 e e 0 = 1
202 19 201 mp1i j 0 M x 0 j e 0 = 1
203 200 202 breqtrd j 0 M x 0 j e x < 1
204 176 177 203 ltled j 0 M x 0 j e x 1
205 175 204 eqbrtrd j 0 M x 0 j e x 1
206 205 adantll φ j 0 M x 0 j e x 1
207 32 a1i φ j 0 M x 0 j
208 4 ad2antrr φ j 0 M x 0 j P
209 48 ad2antrr φ j 0 M x 0 j M 0
210 6 50 eqtri F = y y P 1 h = 1 M y h P
211 27 adantl φ j 0 M x 0 j x
212 207 208 209 210 211 etransclem13 φ j 0 M x 0 j F x = h = 0 M x h if h = 0 P 1 P
213 212 fveq2d φ j 0 M x 0 j F x = h = 0 M x h if h = 0 P 1 P
214 nn0uz 0 = 0
215 27 adantr x 0 j h 0 x
216 nn0re h 0 h
217 216 adantl x 0 j h 0 h
218 215 217 resubcld x 0 j h 0 x h
219 218 adantll φ j 0 M x 0 j h 0 x h
220 61 78 ifcld φ if h = 0 P 1 P 0
221 220 ad3antrrr φ j 0 M x 0 j h 0 if h = 0 P 1 P 0
222 219 221 reexpcld φ j 0 M x 0 j h 0 x h if h = 0 P 1 P
223 222 recnd φ j 0 M x 0 j h 0 x h if h = 0 P 1 P
224 214 209 223 fprodabs φ j 0 M x 0 j h = 0 M x h if h = 0 P 1 P = h = 0 M x h if h = 0 P 1 P
225 elfznn0 h 0 M h 0
226 28 adantr x 0 j h 0 x
227 nn0cn h 0 h
228 227 adantl x 0 j h 0 h
229 226 228 subcld x 0 j h 0 x h
230 229 adantll φ j 0 M x 0 j h 0 x h
231 225 230 sylan2 φ j 0 M x 0 j h 0 M x h
232 220 ad3antrrr φ j 0 M x 0 j h 0 M if h = 0 P 1 P 0
233 231 232 absexpd φ j 0 M x 0 j h 0 M x h if h = 0 P 1 P = x h if h = 0 P 1 P
234 233 prodeq2dv φ j 0 M x 0 j h = 0 M x h if h = 0 P 1 P = h = 0 M x h if h = 0 P 1 P
235 213 224 234 3eqtrd φ j 0 M x 0 j F x = h = 0 M x h if h = 0 P 1 P
236 nfv h φ j 0 M x 0 j
237 fzfid φ j 0 M x 0 j 0 M Fin
238 225 229 sylan2 x 0 j h 0 M x h
239 238 abscld x 0 j h 0 M x h
240 239 adantll φ j 0 M x 0 j h 0 M x h
241 240 232 reexpcld φ j 0 M x 0 j h 0 M x h if h = 0 P 1 P
242 238 absge0d x 0 j h 0 M 0 x h
243 242 adantll φ j 0 M x 0 j h 0 M 0 x h
244 240 232 243 expge0d φ j 0 M x 0 j h 0 M 0 x h if h = 0 P 1 P
245 79 ad3antrrr φ j 0 M x 0 j h 0 M M P
246 77 ad3antrrr φ j 0 M x 0 j h 0 M M
247 246 232 reexpcld φ j 0 M x 0 j h 0 M M if h = 0 P 1 P
248 225 219 sylan2 φ j 0 M x 0 j h 0 M x h
249 28 adantr x 0 j h 0 M x
250 225 228 sylan2 x 0 j h 0 M h
251 249 250 negsubdi2d x 0 j h 0 M x h = h x
252 251 adantll φ j 0 M x 0 j h 0 M x h = h x
253 225 adantl φ j 0 M x 0 j h 0 M h 0
254 253 nn0red φ j 0 M x 0 j h 0 M h
255 0red φ j 0 M x 0 j h 0 M 0
256 211 adantr φ j 0 M x 0 j h 0 M x
257 elfzle2 h 0 M h M
258 257 adantl φ j 0 M x 0 j h 0 M h M
259 198 185 184 ltled j 0 M x 0 j 0 x
260 259 adantll φ j 0 M x 0 j 0 x
261 260 adantr φ j 0 M x 0 j h 0 M 0 x
262 254 255 246 256 258 261 le2subd φ j 0 M x 0 j h 0 M h x M 0
263 84 subid1d φ M 0 = M
264 263 ad3antrrr φ j 0 M x 0 j h 0 M M 0 = M
265 262 264 breqtrd φ j 0 M x 0 j h 0 M h x M
266 252 265 eqbrtrd φ j 0 M x 0 j h 0 M x h M
267 248 246 266 lenegcon1d φ j 0 M x 0 j h 0 M M x h
268 elfzel2 j 0 M M
269 268 zred j 0 M M
270 269 adantr j 0 M x 0 j M
271 54 adantr j 0 M x 0 j j
272 iooltub 0 * j * x 0 j x < j
273 179 181 182 272 syl3anc j 0 M x 0 j x < j
274 elfzle2 j 0 M j M
275 274 adantr j 0 M x 0 j j M
276 185 271 270 273 275 ltletrd j 0 M x 0 j x < M
277 185 270 276 ltled j 0 M x 0 j x M
278 277 adantll φ j 0 M x 0 j x M
279 278 adantr φ j 0 M x 0 j h 0 M x M
280 253 nn0ge0d φ j 0 M x 0 j h 0 M 0 h
281 256 255 246 254 279 280 le2subd φ j 0 M x 0 j h 0 M x h M 0
282 281 264 breqtrd φ j 0 M x 0 j h 0 M x h M
283 248 246 absled φ j 0 M x 0 j h 0 M x h M M x h x h M
284 267 282 283 mpbir2and φ j 0 M x 0 j h 0 M x h M
285 leexp1a x h M if h = 0 P 1 P 0 0 x h x h M x h if h = 0 P 1 P M if h = 0 P 1 P
286 240 246 232 243 284 285 syl32anc φ j 0 M x 0 j h 0 M x h if h = 0 P 1 P M if h = 0 P 1 P
287 5 nnge1d φ 1 M
288 287 ad3antrrr φ j 0 M x 0 j h 0 M 1 M
289 220 nn0zd φ if h = 0 P 1 P
290 78 nn0zd φ P
291 iftrue h = 0 if h = 0 P 1 P = P 1
292 291 adantl φ h = 0 if h = 0 P 1 P = P 1
293 4 nnred φ P
294 293 lem1d φ P 1 P
295 294 adantr φ h = 0 P 1 P
296 292 295 eqbrtrd φ h = 0 if h = 0 P 1 P P
297 iffalse ¬ h = 0 if h = 0 P 1 P = P
298 297 adantl φ ¬ h = 0 if h = 0 P 1 P = P
299 293 leidd φ P P
300 299 adantr φ ¬ h = 0 P P
301 298 300 eqbrtrd φ ¬ h = 0 if h = 0 P 1 P P
302 296 301 pm2.61dan φ if h = 0 P 1 P P
303 eluz2 P if h = 0 P 1 P if h = 0 P 1 P P if h = 0 P 1 P P
304 289 290 302 303 syl3anbrc φ P if h = 0 P 1 P
305 304 ad3antrrr φ j 0 M x 0 j h 0 M P if h = 0 P 1 P
306 246 288 305 leexp2ad φ j 0 M x 0 j h 0 M M if h = 0 P 1 P M P
307 241 247 245 286 306 letrd φ j 0 M x 0 j h 0 M x h if h = 0 P 1 P M P
308 236 237 241 244 245 307 fprodle φ j 0 M x 0 j h = 0 M x h if h = 0 P 1 P h = 0 M M P
309 79 recnd φ M P
310 fprodconst 0 M Fin M P h = 0 M M P = M P 0 M
311 12 309 310 syl2anc φ h = 0 M M P = M P 0 M
312 hashfz0 M 0 0 M = M + 1
313 48 312 syl φ 0 M = M + 1
314 313 oveq2d φ M P 0 M = M P M + 1
315 311 314 eqtrd φ h = 0 M M P = M P M + 1
316 315 ad2antrr φ j 0 M x 0 j h = 0 M M P = M P M + 1
317 308 316 breqtrd φ j 0 M x 0 j h = 0 M x h if h = 0 P 1 P M P M + 1
318 235 317 eqbrtrd φ j 0 M x 0 j F x M P M + 1
319 161 162 163 137 164 165 206 318 lemul12ad φ j 0 M x 0 j e x F x 1 M P M + 1
320 83 mulid2d φ 1 M P M + 1 = M P M + 1
321 320 ad2antrr φ j 0 M x 0 j 1 M P M + 1 = M P M + 1
322 319 321 breqtrd φ j 0 M x 0 j e x F x M P M + 1
323 160 322 eqbrtrd φ j 0 M x 0 j e x F x M P M + 1
324 157 149 156 137 323 itgle φ j 0 M 0 j e x F x dx 0 j M P M + 1 dx
325 154 158 150 159 324 letrd φ j 0 M 0 j e x F x dx 0 j M P M + 1 dx
326 154 150 110 155 325 lemul2ad φ j 0 M A j e j 0 j e x F x dx A j e j 0 j M P M + 1 dx
327 153 326 eqbrtrd φ j 0 M A j e j 0 j e x F x dx A j e j 0 j M P M + 1 dx
328 12 134 151 327 fsumle φ j = 0 M A j e j 0 j e x F x dx j = 0 M A j e j 0 j M P M + 1 dx
329 itgconst 0 j dom vol vol 0 j M P M + 1 0 j M P M + 1 dx = M P M + 1 vol 0 j
330 139 146 147 329 syl3anc φ j 0 M 0 j M P M + 1 dx = M P M + 1 vol 0 j
331 48 nn0ge0d φ 0 M
332 77 78 331 expge0d φ 0 M P
333 79 81 332 expge0d φ 0 M P M + 1
334 333 adantr φ j 0 M 0 M P M + 1
335 22 subid1d j 0 M j 0 = j
336 143 335 eqtrd j 0 M vol 0 j = j
337 336 274 eqbrtrd j 0 M vol 0 j M
338 337 adantl φ j 0 M vol 0 j M
339 146 125 124 334 338 lemul2ad φ j 0 M M P M + 1 vol 0 j M P M + 1 M
340 330 339 eqbrtrd φ j 0 M 0 j M P M + 1 dx M P M + 1 M
341 150 126 110 155 340 lemul2ad φ j 0 M A j e j 0 j M P M + 1 dx A j e j M P M + 1 M
342 12 151 127 341 fsumle φ j = 0 M A j e j 0 j M P M + 1 dx j = 0 M A j e j M P M + 1 M
343 135 152 128 328 342 letrd φ j = 0 M A j e j 0 j e x F x dx j = 0 M A j e j M P M + 1 M
344 132 135 128 136 343 letrd φ j = 0 M A j e j 0 j e x F x dx j = 0 M A j e j M P M + 1 M
345 132 128 133 344 lediv1dd φ j = 0 M A j e j 0 j e x F x dx P 1 ! j = 0 M A j e j M P M + 1 M P 1 !
346 345 123 breqtrd φ j = 0 M A j e j 0 j e x F x dx P 1 ! j = 0 M A j e j M M M + 1 M M + 1 P 1 P 1 !
347 76 130 131 346 7 lelttrd φ j = 0 M A j e j 0 j e x F x dx P 1 ! < 1
348 71 347 eqbrtrd φ K < 1