Metamath Proof Explorer


Theorem etransclem25

Description: P factorial divides the N -th derivative of F applied to J . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem25.p φ P
etransclem25.m φ M 0
etransclem25.n φ N 0
etransclem25.c φ C : 0 M 0 N
etransclem25.sumc φ j = 0 M C j = N
etransclem25.t T = N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j
etransclem25.j φ J 1 M
Assertion etransclem25 φ P ! T

Proof

Step Hyp Ref Expression
1 etransclem25.p φ P
2 etransclem25.m φ M 0
3 etransclem25.n φ N 0
4 etransclem25.c φ C : 0 M 0 N
5 etransclem25.sumc φ j = 0 M C j = N
6 etransclem25.t T = N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j
7 etransclem25.j φ J 1 M
8 1 nnnn0d φ P 0
9 8 faccld φ P !
10 9 nnzd φ P !
11 5 eqcomd φ N = j = 0 M C j
12 11 fveq2d φ N ! = j = 0 M C j !
13 12 oveq1d φ N ! j = 0 M C j ! = j = 0 M C j ! j = 0 M C j !
14 nfcv _ j C
15 fzfid φ 0 M Fin
16 nn0ex 0 V
17 fzssnn0 0 N 0
18 mapss 0 V 0 N 0 0 N 0 M 0 0 M
19 16 17 18 mp2an 0 N 0 M 0 0 M
20 ovex 0 N V
21 ovexd C : 0 M 0 N 0 M V
22 elmapg 0 N V 0 M V C 0 N 0 M C : 0 M 0 N
23 20 21 22 sylancr C : 0 M 0 N C 0 N 0 M C : 0 M 0 N
24 23 ibir C : 0 M 0 N C 0 N 0 M
25 19 24 sselid C : 0 M 0 N C 0 0 M
26 4 25 syl φ C 0 0 M
27 14 15 26 mccl φ j = 0 M C j ! j = 0 M C j !
28 13 27 eqeltrd φ N ! j = 0 M C j !
29 28 nnzd φ N ! j = 0 M C j !
30 7 elfzelzd φ J
31 1 2 4 30 etransclem10 φ if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0
32 29 31 zmulcld φ N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0
33 fzfid φ 1 M Fin
34 1 adantr φ j 1 M P
35 4 adantr φ j 1 M C : 0 M 0 N
36 0z 0
37 fzp1ss 0 0 + 1 M 0 M
38 36 37 ax-mp 0 + 1 M 0 M
39 id j 1 M j 1 M
40 1e0p1 1 = 0 + 1
41 40 oveq1i 1 M = 0 + 1 M
42 39 41 eleqtrdi j 1 M j 0 + 1 M
43 38 42 sselid j 1 M j 0 M
44 43 adantl φ j 1 M j 0 M
45 30 adantr φ j 1 M J
46 34 35 44 45 etransclem3 φ j 1 M if P < C j 0 P ! P C j ! J j P C j
47 33 46 fprodzcl φ j = 1 M if P < C j 0 P ! P C j ! J j P C j
48 10 32 47 3jca φ P ! N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j
49 30 zcnd φ J
50 49 subidd φ J J = 0
51 50 eqcomd φ 0 = J J
52 51 oveq1d φ 0 P C J = J J P C J
53 52 oveq2d φ P ! P C J ! 0 P C J = P ! P C J ! J J P C J
54 53 ifeq2d φ if P < C J 0 P ! P C J ! 0 P C J = if P < C J 0 P ! P C J ! J J P C J
55 id J 1 M J 1 M
56 55 41 eleqtrdi J 1 M J 0 + 1 M
57 38 56 sselid J 1 M J 0 M
58 7 57 syl φ J 0 M
59 1 4 58 30 etransclem3 φ if P < C J 0 P ! P C J ! J J P C J
60 54 59 eqeltrd φ if P < C J 0 P ! P C J ! 0 P C J
61 fzfi 1 M Fin
62 diffi 1 M Fin 1 M J Fin
63 61 62 mp1i φ 1 M J Fin
64 1 adantr φ j 1 M J P
65 4 adantr φ j 1 M J C : 0 M 0 N
66 eldifi j 1 M J j 1 M
67 66 43 syl j 1 M J j 0 M
68 67 adantl φ j 1 M J j 0 M
69 30 adantr φ j 1 M J J
70 64 65 68 69 etransclem3 φ j 1 M J if P < C j 0 P ! P C j ! J j P C j
71 63 70 fprodzcl φ j 1 M J if P < C j 0 P ! P C j ! J j P C j
72 dvds0 P ! P ! 0
73 10 72 syl φ P ! 0
74 73 adantr φ P < C J P ! 0
75 iftrue P < C J if P < C J 0 P ! P C J ! 0 P C J = 0
76 75 eqcomd P < C J 0 = if P < C J 0 P ! P C J ! 0 P C J
77 76 adantl φ P < C J 0 = if P < C J 0 P ! P C J ! 0 P C J
78 74 77 breqtrd φ P < C J P ! if P < C J 0 P ! P C J ! 0 P C J
79 iddvds P ! P ! P !
80 10 79 syl φ P ! P !
81 80 ad2antrr φ ¬ P < C J P = C J P ! P !
82 iffalse ¬ P < C J if P < C J 0 P ! P C J ! 0 P C J = P ! P C J ! 0 P C J
83 82 ad2antlr φ ¬ P < C J P = C J if P < C J 0 P ! P C J ! 0 P C J = P ! P C J ! 0 P C J
84 oveq1 P = C J P C J = C J C J
85 84 adantl φ P = C J P C J = C J C J
86 4 58 ffvelrnd φ C J 0 N
87 86 elfzelzd φ C J
88 87 zcnd φ C J
89 88 adantr φ P = C J C J
90 89 subidd φ P = C J C J C J = 0
91 85 90 eqtrd φ P = C J P C J = 0
92 91 fveq2d φ P = C J P C J ! = 0 !
93 fac0 0 ! = 1
94 92 93 eqtrdi φ P = C J P C J ! = 1
95 94 oveq2d φ P = C J P ! P C J ! = P ! 1
96 9 nncnd φ P !
97 96 div1d φ P ! 1 = P !
98 97 adantr φ P = C J P ! 1 = P !
99 95 98 eqtrd φ P = C J P ! P C J ! = P !
100 91 oveq2d φ P = C J 0 P C J = 0 0
101 0cnd φ P = C J 0
102 101 exp0d φ P = C J 0 0 = 1
103 100 102 eqtrd φ P = C J 0 P C J = 1
104 99 103 oveq12d φ P = C J P ! P C J ! 0 P C J = P ! 1
105 96 mulid1d φ P ! 1 = P !
106 105 adantr φ P = C J P ! 1 = P !
107 104 106 eqtrd φ P = C J P ! P C J ! 0 P C J = P !
108 107 adantlr φ ¬ P < C J P = C J P ! P C J ! 0 P C J = P !
109 83 108 eqtr2d φ ¬ P < C J P = C J P ! = if P < C J 0 P ! P C J ! 0 P C J
110 81 109 breqtrd φ ¬ P < C J P = C J P ! if P < C J 0 P ! P C J ! 0 P C J
111 73 ad2antrr φ ¬ P < C J ¬ P = C J P ! 0
112 simpr φ ¬ P < C J ¬ P < C J
113 112 adantr φ ¬ P < C J ¬ P = C J ¬ P < C J
114 113 iffalsed φ ¬ P < C J ¬ P = C J if P < C J 0 P ! P C J ! 0 P C J = P ! P C J ! 0 P C J
115 simpll φ ¬ P < C J ¬ P = C J φ
116 87 zred φ C J
117 116 ad2antrr φ ¬ P < C J ¬ P = C J C J
118 1 nnred φ P
119 118 ad2antrr φ ¬ P < C J ¬ P = C J P
120 116 adantr φ ¬ P < C J C J
121 118 adantr φ ¬ P < C J P
122 120 121 112 nltled φ ¬ P < C J C J P
123 122 adantr φ ¬ P < C J ¬ P = C J C J P
124 neqne ¬ P = C J P C J
125 124 adantl φ ¬ P < C J ¬ P = C J P C J
126 117 119 123 125 leneltd φ ¬ P < C J ¬ P = C J C J < P
127 1 nnzd φ P
128 127 adantr φ C J < P P
129 87 adantr φ C J < P C J
130 128 129 zsubcld φ C J < P P C J
131 simpr φ C J < P C J < P
132 116 adantr φ C J < P C J
133 118 adantr φ C J < P P
134 132 133 posdifd φ C J < P C J < P 0 < P C J
135 131 134 mpbid φ C J < P 0 < P C J
136 elnnz P C J P C J 0 < P C J
137 130 135 136 sylanbrc φ C J < P P C J
138 137 0expd φ C J < P 0 P C J = 0
139 138 oveq2d φ C J < P P ! P C J ! 0 P C J = P ! P C J ! 0
140 96 adantr φ C J < P P !
141 137 nnnn0d φ C J < P P C J 0
142 141 faccld φ C J < P P C J !
143 142 nncnd φ C J < P P C J !
144 142 nnne0d φ C J < P P C J ! 0
145 140 143 144 divcld φ C J < P P ! P C J !
146 145 mul01d φ C J < P P ! P C J ! 0 = 0
147 139 146 eqtrd φ C J < P P ! P C J ! 0 P C J = 0
148 115 126 147 syl2anc φ ¬ P < C J ¬ P = C J P ! P C J ! 0 P C J = 0
149 114 148 eqtr2d φ ¬ P < C J ¬ P = C J 0 = if P < C J 0 P ! P C J ! 0 P C J
150 111 149 breqtrd φ ¬ P < C J ¬ P = C J P ! if P < C J 0 P ! P C J ! 0 P C J
151 110 150 pm2.61dan φ ¬ P < C J P ! if P < C J 0 P ! P C J ! 0 P C J
152 78 151 pm2.61dan φ P ! if P < C J 0 P ! P C J ! 0 P C J
153 10 60 71 152 dvdsmultr1d φ P ! if P < C J 0 P ! P C J ! 0 P C J j 1 M J if P < C j 0 P ! P C j ! J j P C j
154 46 zcnd φ j 1 M if P < C j 0 P ! P C j ! J j P C j
155 fveq2 j = J C j = C J
156 155 breq2d j = J P < C j P < C J
157 156 adantl φ j = J P < C j P < C J
158 155 oveq2d j = J P C j = P C J
159 158 fveq2d j = J P C j ! = P C J !
160 159 oveq2d j = J P ! P C j ! = P ! P C J !
161 160 adantl φ j = J P ! P C j ! = P ! P C J !
162 oveq2 j = J J j = J J
163 162 50 sylan9eqr φ j = J J j = 0
164 158 adantl φ j = J P C j = P C J
165 163 164 oveq12d φ j = J J j P C j = 0 P C J
166 161 165 oveq12d φ j = J P ! P C j ! J j P C j = P ! P C J ! 0 P C J
167 157 166 ifbieq2d φ j = J if P < C j 0 P ! P C j ! J j P C j = if P < C J 0 P ! P C J ! 0 P C J
168 33 154 7 167 fprodsplit1 φ j = 1 M if P < C j 0 P ! P C j ! J j P C j = if P < C J 0 P ! P C J ! 0 P C J j 1 M J if P < C j 0 P ! P C j ! J j P C j
169 153 168 breqtrrd φ P ! j = 1 M if P < C j 0 P ! P C j ! J j P C j
170 dvdsmultr2 P ! N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j P ! j = 1 M if P < C j 0 P ! P C j ! J j P C j P ! N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j
171 48 169 170 sylc φ P ! N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j
172 3 faccld φ N !
173 172 nncnd φ N !
174 4 ffvelrnda φ j 0 M C j 0 N
175 17 174 sselid φ j 0 M C j 0
176 175 faccld φ j 0 M C j !
177 176 nncnd φ j 0 M C j !
178 15 177 fprodcl φ j = 0 M C j !
179 176 nnne0d φ j 0 M C j ! 0
180 15 177 179 fprodn0 φ j = 0 M C j ! 0
181 173 178 180 divcld φ N ! j = 0 M C j !
182 31 zcnd φ if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0
183 33 154 fprodcl φ j = 1 M if P < C j 0 P ! P C j ! J j P C j
184 181 182 183 mulassd φ N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j = N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j
185 184 6 eqtr4di φ N ! j = 0 M C j ! if P 1 < C 0 0 P 1 ! P - 1 - C 0 ! J P - 1 - C 0 j = 1 M if P < C j 0 P ! P C j ! J j P C j = T
186 171 185 breqtrd φ P ! T