Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem27.s |
|
2 |
|
etransclem27.x |
|
3 |
|
etransclem27.p |
|
4 |
|
etransclem27.h |
|
5 |
|
etransclem27.cfi |
|
6 |
|
etransclem27.cf |
|
7 |
|
etransclem27.g |
|
8 |
|
etransclem27.jx |
|
9 |
|
etransclem27.jz |
|
10 |
|
fveq2 |
|
11 |
10
|
prodeq2ad |
|
12 |
11
|
sumeq2sdv |
|
13 |
|
dmfi |
|
14 |
5 13
|
syl |
|
15 |
|
fzfid |
|
16 |
1
|
ad2antrr |
|
17 |
2
|
ad2antrr |
|
18 |
3
|
ad2antrr |
|
19 |
|
etransclem5 |
|
20 |
4 19
|
eqtri |
|
21 |
|
simpr |
|
22 |
6
|
ffvelrnda |
|
23 |
|
elmapi |
|
24 |
22 23
|
syl |
|
25 |
24
|
ffvelrnda |
|
26 |
16 17 18 20 21 25
|
etransclem20 |
|
27 |
8
|
ad2antrr |
|
28 |
26 27
|
ffvelrnd |
|
29 |
15 28
|
fprodcl |
|
30 |
14 29
|
fsumcl |
|
31 |
7 12 8 30
|
fvmptd3 |
|
32 |
16 17 18 20 21 25 27
|
etransclem21 |
|
33 |
|
iftrue |
|
34 |
|
0zd |
|
35 |
33 34
|
eqeltrd |
|
36 |
35
|
adantl |
|
37 |
|
0zd |
|
38 |
|
nnm1nn0 |
|
39 |
3 38
|
syl |
|
40 |
3
|
nnnn0d |
|
41 |
39 40
|
ifcld |
|
42 |
41
|
nn0zd |
|
43 |
42
|
ad3antrrr |
|
44 |
25
|
nn0zd |
|
45 |
44
|
adantr |
|
46 |
43 45
|
zsubcld |
|
47 |
45
|
zred |
|
48 |
43
|
zred |
|
49 |
|
simpr |
|
50 |
47 48 49
|
nltled |
|
51 |
48 47
|
subge0d |
|
52 |
50 51
|
mpbird |
|
53 |
|
0red |
|
54 |
25
|
nn0red |
|
55 |
41
|
nn0red |
|
56 |
55
|
ad2antrr |
|
57 |
25
|
nn0ge0d |
|
58 |
53 54 56 57
|
lesub2dd |
|
59 |
56
|
recnd |
|
60 |
59
|
subid1d |
|
61 |
58 60
|
breqtrd |
|
62 |
61
|
adantr |
|
63 |
37 43 46 52 62
|
elfzd |
|
64 |
|
permnn |
|
65 |
63 64
|
syl |
|
66 |
65
|
nnzd |
|
67 |
9
|
ad3antrrr |
|
68 |
|
elfzelz |
|
69 |
68
|
ad2antlr |
|
70 |
67 69
|
zsubcld |
|
71 |
|
elnn0z |
|
72 |
46 52 71
|
sylanbrc |
|
73 |
|
zexpcl |
|
74 |
70 72 73
|
syl2anc |
|
75 |
66 74
|
zmulcld |
|
76 |
37 75
|
ifcld |
|
77 |
36 76
|
pm2.61dan |
|
78 |
32 77
|
eqeltrd |
|
79 |
15 78
|
fprodzcl |
|
80 |
14 79
|
fsumzcl |
|
81 |
31 80
|
eqeltrd |
|