Metamath Proof Explorer


Theorem etransclem3

Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem3.n φ P
etransclem3.c φ C : 0 M 0 N
etransclem3.j φ J 0 M
etransclem3.4 φ K
Assertion etransclem3 φ if P < C J 0 P ! P C J ! K J P C J

Proof

Step Hyp Ref Expression
1 etransclem3.n φ P
2 etransclem3.c φ C : 0 M 0 N
3 etransclem3.j φ J 0 M
4 etransclem3.4 φ K
5 0zd φ P < C J 0
6 0zd φ ¬ P < C J 0
7 1 nnzd φ P
8 7 adantr φ ¬ P < C J P
9 2 3 ffvelrnd φ C J 0 N
10 9 elfzelzd φ C J
11 7 10 zsubcld φ P C J
12 11 adantr φ ¬ P < C J P C J
13 10 zred φ C J
14 13 adantr φ ¬ P < C J C J
15 8 zred φ ¬ P < C J P
16 simpr φ ¬ P < C J ¬ P < C J
17 14 15 16 nltled φ ¬ P < C J C J P
18 15 14 subge0d φ ¬ P < C J 0 P C J C J P
19 17 18 mpbird φ ¬ P < C J 0 P C J
20 elfzle1 C J 0 N 0 C J
21 9 20 syl φ 0 C J
22 1 nnred φ P
23 22 13 subge02d φ 0 C J P C J P
24 21 23 mpbid φ P C J P
25 24 adantr φ ¬ P < C J P C J P
26 6 8 12 19 25 elfzd φ ¬ P < C J P C J 0 P
27 permnn P C J 0 P P ! P C J !
28 26 27 syl φ ¬ P < C J P ! P C J !
29 28 nnzd φ ¬ P < C J P ! P C J !
30 3 elfzelzd φ J
31 4 30 zsubcld φ K J
32 31 adantr φ ¬ P < C J K J
33 elnn0z P C J 0 P C J 0 P C J
34 12 19 33 sylanbrc φ ¬ P < C J P C J 0
35 zexpcl K J P C J 0 K J P C J
36 32 34 35 syl2anc φ ¬ P < C J K J P C J
37 29 36 zmulcld φ ¬ P < C J P ! P C J ! K J P C J
38 5 37 ifclda φ if P < C J 0 P ! P C J ! K J P C J