Metamath Proof Explorer


Theorem etransclem30

Description: The N -th derivative of F . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem30.s φ S
etransclem30.a φ X TopOpen fld 𝑡 S
etransclem30.p φ P
etransclem30.m φ M 0
etransclem30.f F = x X x P 1 j = 1 M x j P
etransclem30.n φ N 0
etransclem30.h H = j 0 M x X x j if j = 0 P 1 P
etransclem30.c C = n 0 c 0 n 0 M | j = 0 M c j = n
Assertion etransclem30 φ S D n F N = x X c C N N ! j = 0 M c j ! j = 0 M S D n H j c j x

Proof

Step Hyp Ref Expression
1 etransclem30.s φ S
2 etransclem30.a φ X TopOpen fld 𝑡 S
3 etransclem30.p φ P
4 etransclem30.m φ M 0
5 etransclem30.f F = x X x P 1 j = 1 M x j P
6 etransclem30.n φ N 0
7 etransclem30.h H = j 0 M x X x j if j = 0 P 1 P
8 etransclem30.c C = n 0 c 0 n 0 M | j = 0 M c j = n
9 eqid x X j = 0 M H j x = x X j = 0 M H j x
10 1 2 3 4 5 6 7 8 9 etransclem29 φ S D n F N = x X c C N N ! j = 0 M c j ! j = 0 M S D n H j c j x