Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
e is transcendental
etransclem30
Next ⟩
etransclem31
Metamath Proof Explorer
Ascii
Unicode
Theorem
etransclem30
Description:
The
N
-th derivative of
F
.
(Contributed by
Glauco Siliprandi
, 5-Apr-2020)
Ref
Expression
Hypotheses
etransclem30.s
⊢
φ
→
S
∈
ℝ
ℂ
etransclem30.a
⊢
φ
→
X
∈
TopOpen
⁡
ℂ
fld
↾
𝑡
S
etransclem30.p
⊢
φ
→
P
∈
ℕ
etransclem30.m
⊢
φ
→
M
∈
ℕ
0
etransclem30.f
⊢
F
=
x
∈
X
⟼
x
P
−
1
⁢
∏
j
=
1
M
x
−
j
P
etransclem30.n
⊢
φ
→
N
∈
ℕ
0
etransclem30.h
⊢
H
=
j
∈
0
…
M
⟼
x
∈
X
⟼
x
−
j
if
j
=
0
P
−
1
P
etransclem30.c
⊢
C
=
n
∈
ℕ
0
⟼
c
∈
0
…
n
0
…
M
|
∑
j
=
0
M
c
⁡
j
=
n
Assertion
etransclem30
⊢
φ
→
S
D
n
F
⁡
N
=
x
∈
X
⟼
∑
c
∈
C
⁡
N
N
!
∏
j
=
0
M
c
⁡
j
!
⁢
∏
j
=
0
M
S
D
n
H
⁡
j
⁡
c
⁡
j
⁡
x
Proof
Step
Hyp
Ref
Expression
1
etransclem30.s
⊢
φ
→
S
∈
ℝ
ℂ
2
etransclem30.a
⊢
φ
→
X
∈
TopOpen
⁡
ℂ
fld
↾
𝑡
S
3
etransclem30.p
⊢
φ
→
P
∈
ℕ
4
etransclem30.m
⊢
φ
→
M
∈
ℕ
0
5
etransclem30.f
⊢
F
=
x
∈
X
⟼
x
P
−
1
⁢
∏
j
=
1
M
x
−
j
P
6
etransclem30.n
⊢
φ
→
N
∈
ℕ
0
7
etransclem30.h
⊢
H
=
j
∈
0
…
M
⟼
x
∈
X
⟼
x
−
j
if
j
=
0
P
−
1
P
8
etransclem30.c
⊢
C
=
n
∈
ℕ
0
⟼
c
∈
0
…
n
0
…
M
|
∑
j
=
0
M
c
⁡
j
=
n
9
eqid
⊢
x
∈
X
⟼
∏
j
=
0
M
H
⁡
j
⁡
x
=
x
∈
X
⟼
∏
j
=
0
M
H
⁡
j
⁡
x
10
1
2
3
4
5
6
7
8
9
etransclem29
⊢
φ
→
S
D
n
F
⁡
N
=
x
∈
X
⟼
∑
c
∈
C
⁡
N
N
!
∏
j
=
0
M
c
⁡
j
!
⁢
∏
j
=
0
M
S
D
n
H
⁡
j
⁡
c
⁡
j
⁡
x