Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem33.s |
|
2 |
|
etransclem33.x |
|
3 |
|
etransclem33.p |
|
4 |
|
etransclem33.m |
|
5 |
|
etransclem33.f |
|
6 |
|
etransclem33.n |
|
7 |
|
eqidd |
|
8 |
|
oveq2 |
|
9 |
8
|
oveq1d |
|
10 |
|
eqeq2 |
|
11 |
9 10
|
rabeqbidv |
|
12 |
11
|
adantl |
|
13 |
|
ovex |
|
14 |
13
|
rabex |
|
15 |
14
|
a1i |
|
16 |
7 12 6 15
|
fvmptd |
|
17 |
|
fzfi |
|
18 |
|
fzfi |
|
19 |
|
mapfi |
|
20 |
17 18 19
|
mp2an |
|
21 |
|
ssrab2 |
|
22 |
|
ssfi |
|
23 |
20 21 22
|
mp2an |
|
24 |
16 23
|
eqeltrdi |
|
25 |
24
|
adantr |
|
26 |
6
|
faccld |
|
27 |
26
|
nncnd |
|
28 |
27
|
ad2antrr |
|
29 |
18
|
a1i |
|
30 |
|
simpr |
|
31 |
16
|
adantr |
|
32 |
30 31
|
eleqtrd |
|
33 |
21 32
|
sselid |
|
34 |
|
elmapi |
|
35 |
33 34
|
syl |
|
36 |
35
|
ffvelrnda |
|
37 |
36
|
adantllr |
|
38 |
|
elfznn0 |
|
39 |
37 38
|
syl |
|
40 |
39
|
faccld |
|
41 |
40
|
nncnd |
|
42 |
29 41
|
fprodcl |
|
43 |
40
|
nnne0d |
|
44 |
29 41 43
|
fprodn0 |
|
45 |
28 42 44
|
divcld |
|
46 |
1
|
ad3antrrr |
|
47 |
2
|
ad3antrrr |
|
48 |
3
|
ad3antrrr |
|
49 |
|
etransclem5 |
|
50 |
|
simpr |
|
51 |
46 47 48 49 50 39
|
etransclem20 |
|
52 |
|
simpllr |
|
53 |
51 52
|
ffvelrnd |
|
54 |
29 53
|
fprodcl |
|
55 |
45 54
|
mulcld |
|
56 |
25 55
|
fsumcl |
|
57 |
|
eqid |
|
58 |
56 57
|
fmptd |
|
59 |
|
etransclem5 |
|
60 |
|
etransclem11 |
|
61 |
1 2 3 4 5 6 59 60
|
etransclem30 |
|
62 |
61
|
feq1d |
|
63 |
58 62
|
mpbird |
|