Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem34.s |
|
2 |
|
etransclem34.a |
|
3 |
|
etransclem34.p |
|
4 |
|
etransclem34.m |
|
5 |
|
etransclem34.f |
|
6 |
|
etransclem34.n |
|
7 |
|
etransclem34.h |
|
8 |
|
etransclem34.c |
|
9 |
1 2 3 4 5 6 7 8
|
etransclem30 |
|
10 |
1 2
|
dvdmsscn |
|
11 |
8 6
|
etransclem16 |
|
12 |
10
|
adantr |
|
13 |
6
|
faccld |
|
14 |
13
|
nncnd |
|
15 |
14
|
adantr |
|
16 |
|
fzfid |
|
17 |
|
fzssnn0 |
|
18 |
|
ssrab2 |
|
19 |
|
simpr |
|
20 |
8 6
|
etransclem12 |
|
21 |
20
|
adantr |
|
22 |
19 21
|
eleqtrd |
|
23 |
18 22
|
sselid |
|
24 |
|
elmapi |
|
25 |
23 24
|
syl |
|
26 |
25
|
ffvelrnda |
|
27 |
17 26
|
sselid |
|
28 |
27
|
faccld |
|
29 |
28
|
nncnd |
|
30 |
16 29
|
fprodcl |
|
31 |
28
|
nnne0d |
|
32 |
16 29 31
|
fprodn0 |
|
33 |
15 30 32
|
divcld |
|
34 |
|
ssid |
|
35 |
34
|
a1i |
|
36 |
12 33 35
|
constcncfg |
|
37 |
1
|
ad2antrr |
|
38 |
2
|
ad2antrr |
|
39 |
3
|
ad2antrr |
|
40 |
|
etransclem5 |
|
41 |
7 40
|
eqtri |
|
42 |
|
simpr |
|
43 |
37 38 39 41 42 27
|
etransclem20 |
|
44 |
43
|
3adant2 |
|
45 |
|
simp2 |
|
46 |
44 45
|
ffvelrnd |
|
47 |
43
|
feqmptd |
|
48 |
37 38 39 41 42 27
|
etransclem22 |
|
49 |
47 48
|
eqeltrrd |
|
50 |
12 16 46 49
|
fprodcncf |
|
51 |
36 50
|
mulcncf |
|
52 |
10 11 51
|
fsumcncf |
|
53 |
9 52
|
eqeltrd |
|