Metamath Proof Explorer


Theorem etransclem35

Description: P does not divide the P-1 -th derivative of F applied to 0 . This is case 2 of the proof in Juillerat p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem35.p φP
etransclem35.m φM0
etransclem35.f F=xxP1j=1MxjP
etransclem35.c C=n0c0n0M|j=0Mcj=n
etransclem35.d D=j0Mifj=0P10
Assertion etransclem35 φDnFP10=P1!j=1MjP

Proof

Step Hyp Ref Expression
1 etransclem35.p φP
2 etransclem35.m φM0
3 etransclem35.f F=xxP1j=1MxjP
4 etransclem35.c C=n0c0n0M|j=0Mcj=n
5 etransclem35.d D=j0Mifj=0P10
6 reelprrecn
7 6 a1i φ
8 reopn topGenran.
9 tgioo4 topGenran.=TopOpenfld𝑡
10 8 9 eleqtri TopOpenfld𝑡
11 10 a1i φTopOpenfld𝑡
12 nnm1nn0 PP10
13 1 12 syl φP10
14 etransclem5 k0Myykifk=0P1P=j0Mxxjifj=0P1P
15 0red φ0
16 7 11 1 2 3 13 14 4 15 etransclem31 φDnFP10=cCP1P1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj
17 nfv cφ
18 nfcv _cP1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj
19 4 13 etransclem16 φCP1Fin
20 simpr φcCP1cCP1
21 4 13 etransclem12 φCP1=c0P10M|j=0Mcj=P1
22 21 adantr φcCP1CP1=c0P10M|j=0Mcj=P1
23 20 22 eleqtrd φcCP1cc0P10M|j=0Mcj=P1
24 rabid cc0P10M|j=0Mcj=P1c0P10Mj=0Mcj=P1
25 23 24 sylib φcCP1c0P10Mj=0Mcj=P1
26 25 simprd φcCP1j=0Mcj=P1
27 26 eqcomd φcCP1P1=j=0Mcj
28 27 fveq2d φcCP1P1!=j=0Mcj!
29 28 oveq1d φcCP1P1!j=0Mcj!=j=0Mcj!j=0Mcj!
30 nfcv _jc
31 fzfid φcCP10MFin
32 nn0ex 0V
33 fzssnn0 0P10
34 mapss 0V0P100P10M00M
35 32 33 34 mp2an 0P10M00M
36 25 simpld φcCP1c0P10M
37 35 36 sselid φcCP1c00M
38 30 31 37 mccl φcCP1j=0Mcj!j=0Mcj!
39 29 38 eqeltrd φcCP1P1!j=0Mcj!
40 39 nnzd φcCP1P1!j=0Mcj!
41 1 adantr φcCP1P
42 2 adantr φcCP1M0
43 elmapi c0P10Mc:0M0P1
44 36 43 syl φcCP1c:0M0P1
45 0zd φcCP10
46 41 42 44 45 etransclem10 φcCP1ifP1<c00P1!P-1-c0!0P-1-c0
47 fzfid φcCP11MFin
48 1 ad2antrr φcCP1j1MP
49 44 adantr φcCP1j1Mc:0M0P1
50 fz1ssfz0 1M0M
51 50 sseli j1Mj0M
52 51 adantl φcCP1j1Mj0M
53 0zd φcCP1j1M0
54 48 49 52 53 etransclem3 φcCP1j1MifP<cj0P!Pcj!0jPcj
55 47 54 fprodzcl φcCP1j=1MifP<cj0P!Pcj!0jPcj
56 46 55 zmulcld φcCP1ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj
57 40 56 zmulcld φcCP1P1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj
58 57 zcnd φcCP1P1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj
59 nn0uz 0=0
60 13 59 eleqtrdi φP10
61 eluzfz2 P10P10P1
62 60 61 syl φP10P1
63 eluzfz1 P1000P1
64 60 63 syl φ00P1
65 62 64 ifcld φifj=0P100P1
66 65 adantr φj0Mifj=0P100P1
67 66 5 fmptd φD:0M0P1
68 ovex 0P1V
69 ovex 0MV
70 68 69 elmap D0P10MD:0M0P1
71 67 70 sylibr φD0P10M
72 2 59 eleqtrdi φM0
73 fzsscn 0P1
74 67 ffvelcdmda φj0MDj0P1
75 73 74 sselid φj0MDj
76 fveq2 j=0Dj=D0
77 72 75 76 fsum1p φj=0MDj=D0+j=0+1MDj
78 5 a1i φD=j0Mifj=0P10
79 simpr φj=0j=0
80 79 iftrued φj=0ifj=0P10=P1
81 eluzfz1 M000M
82 72 81 syl φ00M
83 78 80 82 13 fvmptd φD0=P1
84 0p1e1 0+1=1
85 84 oveq1i 0+1M=1M
86 85 sumeq1i j=0+1MDj=j=1MDj
87 86 a1i φj=0+1MDj=j=1MDj
88 5 fvmpt2 j0Mifj=0P100P1Dj=ifj=0P10
89 51 65 88 syl2anr φj1MDj=ifj=0P10
90 0red j1M0
91 1red j1M1
92 elfzelz j1Mj
93 92 zred j1Mj
94 0lt1 0<1
95 94 a1i j1M0<1
96 elfzle1 j1M1j
97 90 91 93 95 96 ltletrd j1M0<j
98 90 97 gtned j1Mj0
99 98 neneqd j1M¬j=0
100 99 iffalsed j1Mifj=0P10=0
101 100 adantl φj1Mifj=0P10=0
102 89 101 eqtrd φj1MDj=0
103 102 sumeq2dv φj=1MDj=j=1M0
104 fzfi 1MFin
105 104 olci 1MA1MFin
106 sumz 1MA1MFinj=1M0=0
107 105 106 mp1i φj=1M0=0
108 87 103 107 3eqtrd φj=0+1MDj=0
109 83 108 oveq12d φD0+j=0+1MDj=P-1+0
110 1 nncnd φP
111 1cnd φ1
112 110 111 subcld φP1
113 112 addridd φP-1+0=P1
114 77 109 113 3eqtrd φj=0MDj=P1
115 fveq1 c=Dcj=Dj
116 115 sumeq2sdv c=Dj=0Mcj=j=0MDj
117 116 eqeq1d c=Dj=0Mcj=P1j=0MDj=P1
118 117 elrab Dc0P10M|j=0Mcj=P1D0P10Mj=0MDj=P1
119 71 114 118 sylanbrc φDc0P10M|j=0Mcj=P1
120 119 21 eleqtrrd φDCP1
121 115 fveq2d c=Dcj!=Dj!
122 121 prodeq2ad c=Dj=0Mcj!=j=0MDj!
123 122 oveq2d c=DP1!j=0Mcj!=P1!j=0MDj!
124 fveq1 c=Dc0=D0
125 124 breq2d c=DP1<c0P1<D0
126 124 oveq2d c=DP-1-c0=P-1-D0
127 126 fveq2d c=DP-1-c0!=P-1-D0!
128 127 oveq2d c=DP1!P-1-c0!=P1!P-1-D0!
129 126 oveq2d c=D0P-1-c0=0P-1-D0
130 128 129 oveq12d c=DP1!P-1-c0!0P-1-c0=P1!P-1-D0!0P-1-D0
131 125 130 ifbieq2d c=DifP1<c00P1!P-1-c0!0P-1-c0=ifP1<D00P1!P-1-D0!0P-1-D0
132 115 breq2d c=DP<cjP<Dj
133 115 oveq2d c=DPcj=PDj
134 133 fveq2d c=DPcj!=PDj!
135 134 oveq2d c=DP!Pcj!=P!PDj!
136 133 oveq2d c=D0jPcj=0jPDj
137 135 136 oveq12d c=DP!Pcj!0jPcj=P!PDj!0jPDj
138 132 137 ifbieq2d c=DifP<cj0P!Pcj!0jPcj=ifP<Dj0P!PDj!0jPDj
139 138 prodeq2ad c=Dj=1MifP<cj0P!Pcj!0jPcj=j=1MifP<Dj0P!PDj!0jPDj
140 131 139 oveq12d c=DifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj
141 123 140 oveq12d c=DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=P1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj
142 17 18 19 58 120 141 fsumsplit1 φcCP1P1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=P1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj+cCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj
143 33 74 sselid φj0MDj0
144 143 faccld φj0MDj!
145 144 nncnd φj0MDj!
146 76 fveq2d j=0Dj!=D0!
147 72 145 146 fprod1p φj=0MDj!=D0!j=0+1MDj!
148 83 fveq2d φD0!=P1!
149 85 prodeq1i j=0+1MDj!=j=1MDj!
150 149 a1i φj=0+1MDj!=j=1MDj!
151 102 fveq2d φj1MDj!=0!
152 fac0 0!=1
153 151 152 eqtrdi φj1MDj!=1
154 153 prodeq2dv φj=1MDj!=j=1M1
155 prod1 1MA1MFinj=1M1=1
156 105 155 mp1i φj=1M1=1
157 150 154 156 3eqtrd φj=0+1MDj!=1
158 148 157 oveq12d φD0!j=0+1MDj!=P1!1
159 13 faccld φP1!
160 159 nncnd φP1!
161 160 mulridd φP1!1=P1!
162 147 158 161 3eqtrd φj=0MDj!=P1!
163 162 oveq2d φP1!j=0MDj!=P1!P1!
164 159 nnne0d φP1!0
165 160 164 dividd φP1!P1!=1
166 163 165 eqtrd φP1!j=0MDj!=1
167 13 nn0red φP1
168 83 167 eqeltrd φD0
169 168 167 lttri3d φD0=P1¬D0<P1¬P1<D0
170 83 169 mpbid φ¬D0<P1¬P1<D0
171 170 simprd φ¬P1<D0
172 171 iffalsed φifP1<D00P1!P-1-D0!0P-1-D0=P1!P-1-D0!0P-1-D0
173 83 eqcomd φP1=D0
174 112 173 subeq0bd φP-1-D0=0
175 174 fveq2d φP-1-D0!=0!
176 175 152 eqtrdi φP-1-D0!=1
177 176 oveq2d φP1!P-1-D0!=P1!1
178 160 div1d φP1!1=P1!
179 177 178 eqtrd φP1!P-1-D0!=P1!
180 174 oveq2d φ0P-1-D0=00
181 0cnd φ0
182 181 exp0d φ00=1
183 180 182 eqtrd φ0P-1-D0=1
184 179 183 oveq12d φP1!P-1-D0!0P-1-D0=P1!1
185 172 184 161 3eqtrd φifP1<D00P1!P-1-D0!0P-1-D0=P1!
186 fzssre 0P1
187 67 adantr φj1MD:0M0P1
188 51 adantl φj1Mj0M
189 187 188 ffvelcdmd φj1MDj0P1
190 186 189 sselid φj1MDj
191 1 nnred φP
192 191 adantr φj1MP
193 1 nngt0d φ0<P
194 15 191 193 ltled φ0P
195 194 adantr φj1M0P
196 102 195 eqbrtrd φj1MDjP
197 190 192 196 lensymd φj1M¬P<Dj
198 197 iffalsed φj1MifP<Dj0P!PDj!0jPDj=P!PDj!0jPDj
199 102 oveq2d φj1MPDj=P0
200 110 adantr φj1MP
201 200 subid1d φj1MP0=P
202 199 201 eqtrd φj1MPDj=P
203 202 fveq2d φj1MPDj!=P!
204 203 oveq2d φj1MP!PDj!=P!P!
205 1 nnnn0d φP0
206 205 faccld φP!
207 206 nncnd φP!
208 206 nnne0d φP!0
209 207 208 dividd φP!P!=1
210 209 adantr φj1MP!P!=1
211 204 210 eqtrd φj1MP!PDj!=1
212 df-neg j=0j
213 212 eqcomi 0j=j
214 213 a1i φj1M0j=j
215 214 202 oveq12d φj1M0jPDj=jP
216 211 215 oveq12d φj1MP!PDj!0jPDj=1jP
217 92 znegcld j1Mj
218 217 zcnd j1Mj
219 218 adantl φj1Mj
220 205 adantr φj1MP0
221 219 220 expcld φj1MjP
222 221 mullidd φj1M1jP=jP
223 198 216 222 3eqtrd φj1MifP<Dj0P!PDj!0jPDj=jP
224 223 prodeq2dv φj=1MifP<Dj0P!PDj!0jPDj=j=1MjP
225 185 224 oveq12d φifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj=P1!j=1MjP
226 166 225 oveq12d φP1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj=1P1!j=1MjP
227 fzfid φ1MFin
228 zexpcl jP0jP
229 217 205 228 syl2anr φj1MjP
230 227 229 fprodzcl φj=1MjP
231 230 zcnd φj=1MjP
232 160 231 mulcld φP1!j=1MjP
233 232 mullidd φ1P1!j=1MjP=P1!j=1MjP
234 226 233 eqtrd φP1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj=P1!j=1MjP
235 eldifi cCP1DcCP1
236 82 adantr φcCP100M
237 44 236 ffvelcdmd φcCP1c00P1
238 235 237 sylan2 φcCP1Dc00P1
239 186 238 sselid φcCP1Dc0
240 167 adantr φcCP1DP1
241 elfzle2 c00P1c0P1
242 238 241 syl φcCP1Dc0P1
243 239 240 242 lensymd φcCP1D¬P1<c0
244 243 iffalsed φcCP1DifP1<c00P1!P-1-c0!0P-1-c0=P1!P-1-c0!0P-1-c0
245 13 nn0zd φP1
246 245 adantr φcCP1DP1
247 238 elfzelzd φcCP1Dc0
248 246 247 zsubcld φcCP1DP-1-c0
249 44 ffnd φcCP1cFn0M
250 249 adantr φcCP1P1=c0cFn0M
251 67 ffnd φDFn0M
252 251 ad2antrr φcCP1P1=c0DFn0M
253 fveq2 j=0cj=c0
254 253 adantl φP1=c0j=0cj=c0
255 id P1=c0P1=c0
256 255 eqcomd P1=c0c0=P1
257 256 ad2antlr φP1=c0j=0c0=P1
258 76 adantl φj=0Dj=D0
259 83 adantr φj=0D0=P1
260 258 259 eqtr2d φj=0P1=Dj
261 260 adantlr φP1=c0j=0P1=Dj
262 254 257 261 3eqtrd φP1=c0j=0cj=Dj
263 262 adantllr φcCP1P1=c0j=0cj=Dj
264 263 adantlr φcCP1P1=c0j0Mj=0cj=Dj
265 26 ad4antr φcCP1P1=c0j0M¬j=0¬cj=0j=0Mcj=P1
266 167 ad5antr φcCP1P1=c0j0M¬j=0¬cj=0P1
267 167 ad4antr φcCP1j0M¬j=0¬cj=0P1
268 44 adantr φcCP1k1Mc:0M0P1
269 50 sseli k1Mk0M
270 269 adantl φcCP1k1Mk0M
271 268 270 ffvelcdmd φcCP1k1Mck0P1
272 33 271 sselid φcCP1k1Mck0
273 47 272 fsumnn0cl φcCP1k=1Mck0
274 273 nn0red φcCP1k=1Mck
275 274 ad3antrrr φcCP1j0M¬j=0¬cj=0k=1Mck
276 0red φcCP1j0M¬j=0¬cj=00
277 44 ffvelcdmda φcCP1j0Mcj0P1
278 186 277 sselid φcCP1j0Mcj
279 278 ad2antrr φcCP1j0M¬j=0¬cj=0cj
280 nfv kφcCP1j0M¬j=0¬cj=0
281 nfcv _kcj
282 fzfid φcCP1j0M¬j=0¬cj=01MFin
283 simp-4l φcCP1j0M¬j=0¬cj=0k1MφcCP1
284 73 271 sselid φcCP1k1Mck
285 283 284 sylancom φcCP1j0M¬j=0¬cj=0k1Mck
286 1zzd j0M¬j=01
287 elfzel2 j0MM
288 287 adantr j0M¬j=0M
289 elfzelz j0Mj
290 289 adantr j0M¬j=0j
291 elfznn0 j0Mj0
292 291 adantr j0M¬j=0j0
293 neqne ¬j=0j0
294 293 adantl j0M¬j=0j0
295 elnnne0 jj0j0
296 292 294 295 sylanbrc j0M¬j=0j
297 296 nnge1d j0M¬j=01j
298 elfzle2 j0MjM
299 298 adantr j0M¬j=0jM
300 286 288 290 297 299 elfzd j0M¬j=0j1M
301 300 adantr j0M¬j=0¬cj=0j1M
302 301 adantlll φcCP1j0M¬j=0¬cj=0j1M
303 fveq2 k=jck=cj
304 280 281 282 285 302 303 fsumsplit1 φcCP1j0M¬j=0¬cj=0k=1Mck=cj+k1Mjck
305 304 eqcomd φcCP1j0M¬j=0¬cj=0cj+k1Mjck=k=1Mck
306 305 275 eqeltrd φcCP1j0M¬j=0¬cj=0cj+k1Mjck
307 elfzle1 cj0P10cj
308 277 307 syl φcCP1j0M0cj
309 308 ad2antrr φcCP1j0M¬j=0¬cj=00cj
310 neqne ¬cj=0cj0
311 310 adantl φcCP1j0M¬j=0¬cj=0cj0
312 276 279 309 311 leneltd φcCP1j0M¬j=0¬cj=00<cj
313 diffi 1MFin1MjFin
314 104 313 mp1i φcCP11MjFin
315 eldifi k1Mjk1M
316 315 adantl φcCP1k1Mjk1M
317 50 316 sselid φcCP1k1Mjk0M
318 44 ffvelcdmda φcCP1k0Mck0P1
319 186 318 sselid φcCP1k0Mck
320 317 319 syldan φcCP1k1Mjck
321 elfzle1 ck0P10ck
322 318 321 syl φcCP1k0M0ck
323 317 322 syldan φcCP1k1Mj0ck
324 314 320 323 fsumge0 φcCP10k1Mjck
325 324 adantr φcCP1j0M0k1Mjck
326 314 320 fsumrecl φcCP1k1Mjck
327 326 adantr φcCP1j0Mk1Mjck
328 278 327 addge01d φcCP1j0M0k1Mjckcjcj+k1Mjck
329 325 328 mpbid φcCP1j0Mcjcj+k1Mjck
330 329 ad2antrr φcCP1j0M¬j=0¬cj=0cjcj+k1Mjck
331 276 279 306 312 330 ltletrd φcCP1j0M¬j=0¬cj=00<cj+k1Mjck
332 331 305 breqtrd φcCP1j0M¬j=0¬cj=00<k=1Mck
333 275 332 elrpd φcCP1j0M¬j=0¬cj=0k=1Mck+
334 267 333 ltaddrpd φcCP1j0M¬j=0¬cj=0P1<P-1+k=1Mck
335 334 adantl3r φcCP1P1=c0j0M¬j=0¬cj=0P1<P-1+k=1Mck
336 fveq2 j=kcj=ck
337 336 cbvsumv j=0Mcj=k=0Mck
338 337 a1i φcCP1P1=c0j0M¬j=0¬cj=0j=0Mcj=k=0Mck
339 72 ad5antr φcCP1P1=c0j0M¬j=0¬cj=0M0
340 simp-5l φcCP1P1=c0j0M¬j=0¬cj=0k0MφcCP1
341 73 318 sselid φcCP1k0Mck
342 340 341 sylancom φcCP1P1=c0j0M¬j=0¬cj=0k0Mck
343 fveq2 k=0ck=c0
344 339 342 343 fsum1p φcCP1P1=c0j0M¬j=0¬cj=0k=0Mck=c0+k=0+1Mck
345 256 ad4antlr φcCP1P1=c0j0M¬j=0¬cj=0c0=P1
346 85 sumeq1i k=0+1Mck=k=1Mck
347 346 a1i φcCP1P1=c0j0M¬j=0¬cj=0k=0+1Mck=k=1Mck
348 345 347 oveq12d φcCP1P1=c0j0M¬j=0¬cj=0c0+k=0+1Mck=P-1+k=1Mck
349 338 344 348 3eqtrrd φcCP1P1=c0j0M¬j=0¬cj=0P-1+k=1Mck=j=0Mcj
350 335 349 breqtrd φcCP1P1=c0j0M¬j=0¬cj=0P1<j=0Mcj
351 266 350 gtned φcCP1P1=c0j0M¬j=0¬cj=0j=0McjP1
352 351 neneqd φcCP1P1=c0j0M¬j=0¬cj=0¬j=0Mcj=P1
353 265 352 condan φcCP1P1=c0j0M¬j=0cj=0
354 simpr φj0Mj0M
355 33 66 sselid φj0Mifj=0P100
356 5 fvmpt2 j0Mifj=0P100Dj=ifj=0P10
357 354 355 356 syl2anc φj0MDj=ifj=0P10
358 357 adantr φj0M¬j=0Dj=ifj=0P10
359 simpr φj0M¬j=0¬j=0
360 359 iffalsed φj0M¬j=0ifj=0P10=0
361 358 360 eqtr2d φj0M¬j=00=Dj
362 361 adantllr φcCP1j0M¬j=00=Dj
363 362 adantllr φcCP1P1=c0j0M¬j=00=Dj
364 353 363 eqtrd φcCP1P1=c0j0M¬j=0cj=Dj
365 264 364 pm2.61dan φcCP1P1=c0j0Mcj=Dj
366 250 252 365 eqfnfvd φcCP1P1=c0c=D
367 235 366 sylanl2 φcCP1DP1=c0c=D
368 eldifsni cCP1DcD
369 368 neneqd cCP1D¬c=D
370 369 ad2antlr φcCP1DP1=c0¬c=D
371 367 370 pm2.65da φcCP1D¬P1=c0
372 371 neqned φcCP1DP1c0
373 239 240 242 372 leneltd φcCP1Dc0<P1
374 239 240 posdifd φcCP1Dc0<P10<P-1-c0
375 373 374 mpbid φcCP1D0<P-1-c0
376 elnnz P-1-c0P-1-c00<P-1-c0
377 248 375 376 sylanbrc φcCP1DP-1-c0
378 377 0expd φcCP1D0P-1-c0=0
379 378 oveq2d φcCP1DP1!P-1-c0!0P-1-c0=P1!P-1-c0!0
380 160 adantr φcCP1DP1!
381 377 nnnn0d φcCP1DP-1-c00
382 381 faccld φcCP1DP-1-c0!
383 382 nncnd φcCP1DP-1-c0!
384 382 nnne0d φcCP1DP-1-c0!0
385 380 383 384 divcld φcCP1DP1!P-1-c0!
386 385 mul01d φcCP1DP1!P-1-c0!0=0
387 244 379 386 3eqtrd φcCP1DifP1<c00P1!P-1-c0!0P-1-c0=0
388 387 oveq1d φcCP1DifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=0j=1MifP<cj0P!Pcj!0jPcj
389 235 55 sylan2 φcCP1Dj=1MifP<cj0P!Pcj!0jPcj
390 389 zcnd φcCP1Dj=1MifP<cj0P!Pcj!0jPcj
391 390 mul02d φcCP1D0j=1MifP<cj0P!Pcj!0jPcj=0
392 388 391 eqtrd φcCP1DifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=0
393 392 oveq2d φcCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=P1!j=0Mcj!0
394 fzfid φcCP1D0MFin
395 33 277 sselid φcCP1j0Mcj0
396 235 395 sylanl2 φcCP1Dj0Mcj0
397 396 faccld φcCP1Dj0Mcj!
398 394 397 fprodnncl φcCP1Dj=0Mcj!
399 398 nncnd φcCP1Dj=0Mcj!
400 398 nnne0d φcCP1Dj=0Mcj!0
401 380 399 400 divcld φcCP1DP1!j=0Mcj!
402 401 mul01d φcCP1DP1!j=0Mcj!0=0
403 393 402 eqtrd φcCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=0
404 403 sumeq2dv φcCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=cCP1D0
405 diffi CP1FinCP1DFin
406 19 405 syl φCP1DFin
407 406 olcd φCP1D0CP1DFin
408 sumz CP1D0CP1DFincCP1D0=0
409 407 408 syl φcCP1D0=0
410 404 409 eqtrd φcCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=0
411 234 410 oveq12d φP1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj+cCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=P1!j=1MjP+0
412 232 addridd φP1!j=1MjP+0=P1!j=1MjP
413 nfv jφ
414 413 205 227 219 fprodexp φj=1MjP=j=1MjP
415 414 oveq2d φP1!j=1MjP=P1!j=1MjP
416 411 412 415 3eqtrd φP1!j=0MDj!ifP1<D00P1!P-1-D0!0P-1-D0j=1MifP<Dj0P!PDj!0jPDj+cCP1DP1!j=0Mcj!ifP1<c00P1!P-1-c0!0P-1-c0j=1MifP<cj0P!Pcj!0jPcj=P1!j=1MjP
417 16 142 416 3eqtrd φDnFP10=P1!j=1MjP