Metamath Proof Explorer


Theorem etransclem35

Description: P does not divide the P-1 -th derivative of F applied to 0 . This is case 2 of the proof in Juillerat p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem35.p φ P
etransclem35.m φ M 0
etransclem35.f F = x x P 1 j = 1 M x j P
etransclem35.c C = n 0 c 0 n 0 M | j = 0 M c j = n
etransclem35.d D = j 0 M if j = 0 P 1 0
Assertion etransclem35 φ D n F P 1 0 = P 1 ! j = 1 M j P

Proof

Step Hyp Ref Expression
1 etransclem35.p φ P
2 etransclem35.m φ M 0
3 etransclem35.f F = x x P 1 j = 1 M x j P
4 etransclem35.c C = n 0 c 0 n 0 M | j = 0 M c j = n
5 etransclem35.d D = j 0 M if j = 0 P 1 0
6 reelprrecn
7 6 a1i φ
8 reopn topGen ran .
9 tgioo4 topGen ran . = TopOpen fld 𝑡
10 8 9 eleqtri TopOpen fld 𝑡
11 10 a1i φ TopOpen fld 𝑡
12 nnm1nn0 P P 1 0
13 1 12 syl φ P 1 0
14 etransclem5 k 0 M y y k if k = 0 P 1 P = j 0 M x x j if j = 0 P 1 P
15 0red φ 0
16 7 11 1 2 3 13 14 4 15 etransclem31 φ D n F P 1 0 = c C P 1 P 1 ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j
17 nfv c φ
18 nfcv _ c P 1 ! j = 0 M D j ! if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0 j = 1 M if P < D j 0 P ! P D j ! 0 j P D j
19 4 13 etransclem16 φ C P 1 Fin
20 simpr φ c C P 1 c C P 1
21 4 13 etransclem12 φ C P 1 = c 0 P 1 0 M | j = 0 M c j = P 1
22 21 adantr φ c C P 1 C P 1 = c 0 P 1 0 M | j = 0 M c j = P 1
23 20 22 eleqtrd φ c C P 1 c c 0 P 1 0 M | j = 0 M c j = P 1
24 rabid c c 0 P 1 0 M | j = 0 M c j = P 1 c 0 P 1 0 M j = 0 M c j = P 1
25 23 24 sylib φ c C P 1 c 0 P 1 0 M j = 0 M c j = P 1
26 25 simprd φ c C P 1 j = 0 M c j = P 1
27 26 eqcomd φ c C P 1 P 1 = j = 0 M c j
28 27 fveq2d φ c C P 1 P 1 ! = j = 0 M c j !
29 28 oveq1d φ c C P 1 P 1 ! j = 0 M c j ! = j = 0 M c j ! j = 0 M c j !
30 nfcv _ j c
31 fzfid φ c C P 1 0 M Fin
32 nn0ex 0 V
33 fzssnn0 0 P 1 0
34 mapss 0 V 0 P 1 0 0 P 1 0 M 0 0 M
35 32 33 34 mp2an 0 P 1 0 M 0 0 M
36 25 simpld φ c C P 1 c 0 P 1 0 M
37 35 36 sselid φ c C P 1 c 0 0 M
38 30 31 37 mccl φ c C P 1 j = 0 M c j ! j = 0 M c j !
39 29 38 eqeltrd φ c C P 1 P 1 ! j = 0 M c j !
40 39 nnzd φ c C P 1 P 1 ! j = 0 M c j !
41 1 adantr φ c C P 1 P
42 2 adantr φ c C P 1 M 0
43 elmapi c 0 P 1 0 M c : 0 M 0 P 1
44 36 43 syl φ c C P 1 c : 0 M 0 P 1
45 0zd φ c C P 1 0
46 41 42 44 45 etransclem10 φ c C P 1 if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0
47 fzfid φ c C P 1 1 M Fin
48 1 ad2antrr φ c C P 1 j 1 M P
49 44 adantr φ c C P 1 j 1 M c : 0 M 0 P 1
50 fz1ssfz0 1 M 0 M
51 50 sseli j 1 M j 0 M
52 51 adantl φ c C P 1 j 1 M j 0 M
53 0zd φ c C P 1 j 1 M 0
54 48 49 52 53 etransclem3 φ c C P 1 j 1 M if P < c j 0 P ! P c j ! 0 j P c j
55 47 54 fprodzcl φ c C P 1 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j
56 46 55 zmulcld φ c C P 1 if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j
57 40 56 zmulcld φ c C P 1 P 1 ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j
58 57 zcnd φ c C P 1 P 1 ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j
59 nn0uz 0 = 0
60 13 59 eleqtrdi φ P 1 0
61 eluzfz2 P 1 0 P 1 0 P 1
62 60 61 syl φ P 1 0 P 1
63 eluzfz1 P 1 0 0 0 P 1
64 60 63 syl φ 0 0 P 1
65 62 64 ifcld φ if j = 0 P 1 0 0 P 1
66 65 adantr φ j 0 M if j = 0 P 1 0 0 P 1
67 66 5 fmptd φ D : 0 M 0 P 1
68 ovex 0 P 1 V
69 ovex 0 M V
70 68 69 elmap D 0 P 1 0 M D : 0 M 0 P 1
71 67 70 sylibr φ D 0 P 1 0 M
72 2 59 eleqtrdi φ M 0
73 fzsscn 0 P 1
74 67 ffvelcdmda φ j 0 M D j 0 P 1
75 73 74 sselid φ j 0 M D j
76 fveq2 j = 0 D j = D 0
77 72 75 76 fsum1p φ j = 0 M D j = D 0 + j = 0 + 1 M D j
78 5 a1i φ D = j 0 M if j = 0 P 1 0
79 simpr φ j = 0 j = 0
80 79 iftrued φ j = 0 if j = 0 P 1 0 = P 1
81 eluzfz1 M 0 0 0 M
82 72 81 syl φ 0 0 M
83 78 80 82 13 fvmptd φ D 0 = P 1
84 0p1e1 0 + 1 = 1
85 84 oveq1i 0 + 1 M = 1 M
86 85 sumeq1i j = 0 + 1 M D j = j = 1 M D j
87 86 a1i φ j = 0 + 1 M D j = j = 1 M D j
88 5 fvmpt2 j 0 M if j = 0 P 1 0 0 P 1 D j = if j = 0 P 1 0
89 51 65 88 syl2anr φ j 1 M D j = if j = 0 P 1 0
90 0red j 1 M 0
91 1red j 1 M 1
92 elfzelz j 1 M j
93 92 zred j 1 M j
94 0lt1 0 < 1
95 94 a1i j 1 M 0 < 1
96 elfzle1 j 1 M 1 j
97 90 91 93 95 96 ltletrd j 1 M 0 < j
98 90 97 gtned j 1 M j 0
99 98 neneqd j 1 M ¬ j = 0
100 99 iffalsed j 1 M if j = 0 P 1 0 = 0
101 100 adantl φ j 1 M if j = 0 P 1 0 = 0
102 89 101 eqtrd φ j 1 M D j = 0
103 102 sumeq2dv φ j = 1 M D j = j = 1 M 0
104 fzfi 1 M Fin
105 104 olci 1 M A 1 M Fin
106 sumz 1 M A 1 M Fin j = 1 M 0 = 0
107 105 106 mp1i φ j = 1 M 0 = 0
108 87 103 107 3eqtrd φ j = 0 + 1 M D j = 0
109 83 108 oveq12d φ D 0 + j = 0 + 1 M D j = P - 1 + 0
110 1 nncnd φ P
111 1cnd φ 1
112 110 111 subcld φ P 1
113 112 addridd φ P - 1 + 0 = P 1
114 77 109 113 3eqtrd φ j = 0 M D j = P 1
115 fveq1 c = D c j = D j
116 115 sumeq2sdv c = D j = 0 M c j = j = 0 M D j
117 116 eqeq1d c = D j = 0 M c j = P 1 j = 0 M D j = P 1
118 117 elrab D c 0 P 1 0 M | j = 0 M c j = P 1 D 0 P 1 0 M j = 0 M D j = P 1
119 71 114 118 sylanbrc φ D c 0 P 1 0 M | j = 0 M c j = P 1
120 119 21 eleqtrrd φ D C P 1
121 115 fveq2d c = D c j ! = D j !
122 121 prodeq2ad c = D j = 0 M c j ! = j = 0 M D j !
123 122 oveq2d c = D P 1 ! j = 0 M c j ! = P 1 ! j = 0 M D j !
124 fveq1 c = D c 0 = D 0
125 124 breq2d c = D P 1 < c 0 P 1 < D 0
126 124 oveq2d c = D P - 1 - c 0 = P - 1 - D 0
127 126 fveq2d c = D P - 1 - c 0 ! = P - 1 - D 0 !
128 127 oveq2d c = D P 1 ! P - 1 - c 0 ! = P 1 ! P - 1 - D 0 !
129 126 oveq2d c = D 0 P - 1 - c 0 = 0 P - 1 - D 0
130 128 129 oveq12d c = D P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 = P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0
131 125 130 ifbieq2d c = D if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 = if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0
132 115 breq2d c = D P < c j P < D j
133 115 oveq2d c = D P c j = P D j
134 133 fveq2d c = D P c j ! = P D j !
135 134 oveq2d c = D P ! P c j ! = P ! P D j !
136 133 oveq2d c = D 0 j P c j = 0 j P D j
137 135 136 oveq12d c = D P ! P c j ! 0 j P c j = P ! P D j ! 0 j P D j
138 132 137 ifbieq2d c = D if P < c j 0 P ! P c j ! 0 j P c j = if P < D j 0 P ! P D j ! 0 j P D j
139 138 prodeq2ad c = D j = 1 M if P < c j 0 P ! P c j ! 0 j P c j = j = 1 M if P < D j 0 P ! P D j ! 0 j P D j
140 131 139 oveq12d c = D if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j = if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0 j = 1 M if P < D j 0 P ! P D j ! 0 j P D j
141 123 140 oveq12d c = D P 1 ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j = P 1 ! j = 0 M D j ! if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0 j = 1 M if P < D j 0 P ! P D j ! 0 j P D j
142 17 18 19 58 120 141 fsumsplit1 φ c C P 1 P 1 ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j = P 1 ! j = 0 M D j ! if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0 j = 1 M if P < D j 0 P ! P D j ! 0 j P D j + c C P 1 D P 1 ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j
143 33 74 sselid φ j 0 M D j 0
144 143 faccld φ j 0 M D j !
145 144 nncnd φ j 0 M D j !
146 76 fveq2d j = 0 D j ! = D 0 !
147 72 145 146 fprod1p φ j = 0 M D j ! = D 0 ! j = 0 + 1 M D j !
148 83 fveq2d φ D 0 ! = P 1 !
149 85 prodeq1i j = 0 + 1 M D j ! = j = 1 M D j !
150 149 a1i φ j = 0 + 1 M D j ! = j = 1 M D j !
151 102 fveq2d φ j 1 M D j ! = 0 !
152 fac0 0 ! = 1
153 151 152 eqtrdi φ j 1 M D j ! = 1
154 153 prodeq2dv φ j = 1 M D j ! = j = 1 M 1
155 prod1 1 M A 1 M Fin j = 1 M 1 = 1
156 105 155 mp1i φ j = 1 M 1 = 1
157 150 154 156 3eqtrd φ j = 0 + 1 M D j ! = 1
158 148 157 oveq12d φ D 0 ! j = 0 + 1 M D j ! = P 1 ! 1
159 13 faccld φ P 1 !
160 159 nncnd φ P 1 !
161 160 mulridd φ P 1 ! 1 = P 1 !
162 147 158 161 3eqtrd φ j = 0 M D j ! = P 1 !
163 162 oveq2d φ P 1 ! j = 0 M D j ! = P 1 ! P 1 !
164 159 nnne0d φ P 1 ! 0
165 160 164 dividd φ P 1 ! P 1 ! = 1
166 163 165 eqtrd φ P 1 ! j = 0 M D j ! = 1
167 13 nn0red φ P 1
168 83 167 eqeltrd φ D 0
169 168 167 lttri3d φ D 0 = P 1 ¬ D 0 < P 1 ¬ P 1 < D 0
170 83 169 mpbid φ ¬ D 0 < P 1 ¬ P 1 < D 0
171 170 simprd φ ¬ P 1 < D 0
172 171 iffalsed φ if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0 = P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0
173 83 eqcomd φ P 1 = D 0
174 112 173 subeq0bd φ P - 1 - D 0 = 0
175 174 fveq2d φ P - 1 - D 0 ! = 0 !
176 175 152 eqtrdi φ P - 1 - D 0 ! = 1
177 176 oveq2d φ P 1 ! P - 1 - D 0 ! = P 1 ! 1
178 160 div1d φ P 1 ! 1 = P 1 !
179 177 178 eqtrd φ P 1 ! P - 1 - D 0 ! = P 1 !
180 174 oveq2d φ 0 P - 1 - D 0 = 0 0
181 0cnd φ 0
182 181 exp0d φ 0 0 = 1
183 180 182 eqtrd φ 0 P - 1 - D 0 = 1
184 179 183 oveq12d φ P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0 = P 1 ! 1
185 172 184 161 3eqtrd φ if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0 = P 1 !
186 fzssre 0 P 1
187 67 adantr φ j 1 M D : 0 M 0 P 1
188 51 adantl φ j 1 M j 0 M
189 187 188 ffvelcdmd φ j 1 M D j 0 P 1
190 186 189 sselid φ j 1 M D j
191 1 nnred φ P
192 191 adantr φ j 1 M P
193 1 nngt0d φ 0 < P
194 15 191 193 ltled φ 0 P
195 194 adantr φ j 1 M 0 P
196 102 195 eqbrtrd φ j 1 M D j P
197 190 192 196 lensymd φ j 1 M ¬ P < D j
198 197 iffalsed φ j 1 M if P < D j 0 P ! P D j ! 0 j P D j = P ! P D j ! 0 j P D j
199 102 oveq2d φ j 1 M P D j = P 0
200 110 adantr φ j 1 M P
201 200 subid1d φ j 1 M P 0 = P
202 199 201 eqtrd φ j 1 M P D j = P
203 202 fveq2d φ j 1 M P D j ! = P !
204 203 oveq2d φ j 1 M P ! P D j ! = P ! P !
205 1 nnnn0d φ P 0
206 205 faccld φ P !
207 206 nncnd φ P !
208 206 nnne0d φ P ! 0
209 207 208 dividd φ P ! P ! = 1
210 209 adantr φ j 1 M P ! P ! = 1
211 204 210 eqtrd φ j 1 M P ! P D j ! = 1
212 df-neg j = 0 j
213 212 eqcomi 0 j = j
214 213 a1i φ j 1 M 0 j = j
215 214 202 oveq12d φ j 1 M 0 j P D j = j P
216 211 215 oveq12d φ j 1 M P ! P D j ! 0 j P D j = 1 j P
217 92 znegcld j 1 M j
218 217 zcnd j 1 M j
219 218 adantl φ j 1 M j
220 205 adantr φ j 1 M P 0
221 219 220 expcld φ j 1 M j P
222 221 mullidd φ j 1 M 1 j P = j P
223 198 216 222 3eqtrd φ j 1 M if P < D j 0 P ! P D j ! 0 j P D j = j P
224 223 prodeq2dv φ j = 1 M if P < D j 0 P ! P D j ! 0 j P D j = j = 1 M j P
225 185 224 oveq12d φ if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0 j = 1 M if P < D j 0 P ! P D j ! 0 j P D j = P 1 ! j = 1 M j P
226 166 225 oveq12d φ P 1 ! j = 0 M D j ! if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0 j = 1 M if P < D j 0 P ! P D j ! 0 j P D j = 1 P 1 ! j = 1 M j P
227 fzfid φ 1 M Fin
228 zexpcl j P 0 j P
229 217 205 228 syl2anr φ j 1 M j P
230 227 229 fprodzcl φ j = 1 M j P
231 230 zcnd φ j = 1 M j P
232 160 231 mulcld φ P 1 ! j = 1 M j P
233 232 mullidd φ 1 P 1 ! j = 1 M j P = P 1 ! j = 1 M j P
234 226 233 eqtrd φ P 1 ! j = 0 M D j ! if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0 j = 1 M if P < D j 0 P ! P D j ! 0 j P D j = P 1 ! j = 1 M j P
235 eldifi c C P 1 D c C P 1
236 82 adantr φ c C P 1 0 0 M
237 44 236 ffvelcdmd φ c C P 1 c 0 0 P 1
238 235 237 sylan2 φ c C P 1 D c 0 0 P 1
239 186 238 sselid φ c C P 1 D c 0
240 167 adantr φ c C P 1 D P 1
241 elfzle2 c 0 0 P 1 c 0 P 1
242 238 241 syl φ c C P 1 D c 0 P 1
243 239 240 242 lensymd φ c C P 1 D ¬ P 1 < c 0
244 243 iffalsed φ c C P 1 D if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 = P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0
245 13 nn0zd φ P 1
246 245 adantr φ c C P 1 D P 1
247 238 elfzelzd φ c C P 1 D c 0
248 246 247 zsubcld φ c C P 1 D P - 1 - c 0
249 44 ffnd φ c C P 1 c Fn 0 M
250 249 adantr φ c C P 1 P 1 = c 0 c Fn 0 M
251 67 ffnd φ D Fn 0 M
252 251 ad2antrr φ c C P 1 P 1 = c 0 D Fn 0 M
253 fveq2 j = 0 c j = c 0
254 253 adantl φ P 1 = c 0 j = 0 c j = c 0
255 id P 1 = c 0 P 1 = c 0
256 255 eqcomd P 1 = c 0 c 0 = P 1
257 256 ad2antlr φ P 1 = c 0 j = 0 c 0 = P 1
258 76 adantl φ j = 0 D j = D 0
259 83 adantr φ j = 0 D 0 = P 1
260 258 259 eqtr2d φ j = 0 P 1 = D j
261 260 adantlr φ P 1 = c 0 j = 0 P 1 = D j
262 254 257 261 3eqtrd φ P 1 = c 0 j = 0 c j = D j
263 262 adantllr φ c C P 1 P 1 = c 0 j = 0 c j = D j
264 263 adantlr φ c C P 1 P 1 = c 0 j 0 M j = 0 c j = D j
265 26 ad4antr φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 j = 0 M c j = P 1
266 167 ad5antr φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 P 1
267 167 ad4antr φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 P 1
268 44 adantr φ c C P 1 k 1 M c : 0 M 0 P 1
269 50 sseli k 1 M k 0 M
270 269 adantl φ c C P 1 k 1 M k 0 M
271 268 270 ffvelcdmd φ c C P 1 k 1 M c k 0 P 1
272 33 271 sselid φ c C P 1 k 1 M c k 0
273 47 272 fsumnn0cl φ c C P 1 k = 1 M c k 0
274 273 nn0red φ c C P 1 k = 1 M c k
275 274 ad3antrrr φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 k = 1 M c k
276 0red φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 0
277 44 ffvelcdmda φ c C P 1 j 0 M c j 0 P 1
278 186 277 sselid φ c C P 1 j 0 M c j
279 278 ad2antrr φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 c j
280 nfv k φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0
281 nfcv _ k c j
282 fzfid φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 1 M Fin
283 simp-4l φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 k 1 M φ c C P 1
284 73 271 sselid φ c C P 1 k 1 M c k
285 283 284 sylancom φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 k 1 M c k
286 1zzd j 0 M ¬ j = 0 1
287 elfzel2 j 0 M M
288 287 adantr j 0 M ¬ j = 0 M
289 elfzelz j 0 M j
290 289 adantr j 0 M ¬ j = 0 j
291 elfznn0 j 0 M j 0
292 291 adantr j 0 M ¬ j = 0 j 0
293 neqne ¬ j = 0 j 0
294 293 adantl j 0 M ¬ j = 0 j 0
295 elnnne0 j j 0 j 0
296 292 294 295 sylanbrc j 0 M ¬ j = 0 j
297 296 nnge1d j 0 M ¬ j = 0 1 j
298 elfzle2 j 0 M j M
299 298 adantr j 0 M ¬ j = 0 j M
300 286 288 290 297 299 elfzd j 0 M ¬ j = 0 j 1 M
301 300 adantr j 0 M ¬ j = 0 ¬ c j = 0 j 1 M
302 301 adantlll φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 j 1 M
303 fveq2 k = j c k = c j
304 280 281 282 285 302 303 fsumsplit1 φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 k = 1 M c k = c j + k 1 M j c k
305 304 eqcomd φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 c j + k 1 M j c k = k = 1 M c k
306 305 275 eqeltrd φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 c j + k 1 M j c k
307 elfzle1 c j 0 P 1 0 c j
308 277 307 syl φ c C P 1 j 0 M 0 c j
309 308 ad2antrr φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 0 c j
310 neqne ¬ c j = 0 c j 0
311 310 adantl φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 c j 0
312 276 279 309 311 leneltd φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 0 < c j
313 diffi 1 M Fin 1 M j Fin
314 104 313 mp1i φ c C P 1 1 M j Fin
315 eldifi k 1 M j k 1 M
316 315 adantl φ c C P 1 k 1 M j k 1 M
317 50 316 sselid φ c C P 1 k 1 M j k 0 M
318 44 ffvelcdmda φ c C P 1 k 0 M c k 0 P 1
319 186 318 sselid φ c C P 1 k 0 M c k
320 317 319 syldan φ c C P 1 k 1 M j c k
321 elfzle1 c k 0 P 1 0 c k
322 318 321 syl φ c C P 1 k 0 M 0 c k
323 317 322 syldan φ c C P 1 k 1 M j 0 c k
324 314 320 323 fsumge0 φ c C P 1 0 k 1 M j c k
325 324 adantr φ c C P 1 j 0 M 0 k 1 M j c k
326 314 320 fsumrecl φ c C P 1 k 1 M j c k
327 326 adantr φ c C P 1 j 0 M k 1 M j c k
328 278 327 addge01d φ c C P 1 j 0 M 0 k 1 M j c k c j c j + k 1 M j c k
329 325 328 mpbid φ c C P 1 j 0 M c j c j + k 1 M j c k
330 329 ad2antrr φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 c j c j + k 1 M j c k
331 276 279 306 312 330 ltletrd φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 0 < c j + k 1 M j c k
332 331 305 breqtrd φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 0 < k = 1 M c k
333 275 332 elrpd φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 k = 1 M c k +
334 267 333 ltaddrpd φ c C P 1 j 0 M ¬ j = 0 ¬ c j = 0 P 1 < P - 1 + k = 1 M c k
335 334 adantl3r φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 P 1 < P - 1 + k = 1 M c k
336 fveq2 j = k c j = c k
337 336 cbvsumv j = 0 M c j = k = 0 M c k
338 337 a1i φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 j = 0 M c j = k = 0 M c k
339 72 ad5antr φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 M 0
340 simp-5l φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 k 0 M φ c C P 1
341 73 318 sselid φ c C P 1 k 0 M c k
342 340 341 sylancom φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 k 0 M c k
343 fveq2 k = 0 c k = c 0
344 339 342 343 fsum1p φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 k = 0 M c k = c 0 + k = 0 + 1 M c k
345 256 ad4antlr φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 c 0 = P 1
346 85 sumeq1i k = 0 + 1 M c k = k = 1 M c k
347 346 a1i φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 k = 0 + 1 M c k = k = 1 M c k
348 345 347 oveq12d φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 c 0 + k = 0 + 1 M c k = P - 1 + k = 1 M c k
349 338 344 348 3eqtrrd φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 P - 1 + k = 1 M c k = j = 0 M c j
350 335 349 breqtrd φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 P 1 < j = 0 M c j
351 266 350 gtned φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 j = 0 M c j P 1
352 351 neneqd φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 ¬ c j = 0 ¬ j = 0 M c j = P 1
353 265 352 condan φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 c j = 0
354 simpr φ j 0 M j 0 M
355 33 66 sselid φ j 0 M if j = 0 P 1 0 0
356 5 fvmpt2 j 0 M if j = 0 P 1 0 0 D j = if j = 0 P 1 0
357 354 355 356 syl2anc φ j 0 M D j = if j = 0 P 1 0
358 357 adantr φ j 0 M ¬ j = 0 D j = if j = 0 P 1 0
359 simpr φ j 0 M ¬ j = 0 ¬ j = 0
360 359 iffalsed φ j 0 M ¬ j = 0 if j = 0 P 1 0 = 0
361 358 360 eqtr2d φ j 0 M ¬ j = 0 0 = D j
362 361 adantllr φ c C P 1 j 0 M ¬ j = 0 0 = D j
363 362 adantllr φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 0 = D j
364 353 363 eqtrd φ c C P 1 P 1 = c 0 j 0 M ¬ j = 0 c j = D j
365 264 364 pm2.61dan φ c C P 1 P 1 = c 0 j 0 M c j = D j
366 250 252 365 eqfnfvd φ c C P 1 P 1 = c 0 c = D
367 235 366 sylanl2 φ c C P 1 D P 1 = c 0 c = D
368 eldifsni c C P 1 D c D
369 368 neneqd c C P 1 D ¬ c = D
370 369 ad2antlr φ c C P 1 D P 1 = c 0 ¬ c = D
371 367 370 pm2.65da φ c C P 1 D ¬ P 1 = c 0
372 371 neqned φ c C P 1 D P 1 c 0
373 239 240 242 372 leneltd φ c C P 1 D c 0 < P 1
374 239 240 posdifd φ c C P 1 D c 0 < P 1 0 < P - 1 - c 0
375 373 374 mpbid φ c C P 1 D 0 < P - 1 - c 0
376 elnnz P - 1 - c 0 P - 1 - c 0 0 < P - 1 - c 0
377 248 375 376 sylanbrc φ c C P 1 D P - 1 - c 0
378 377 0expd φ c C P 1 D 0 P - 1 - c 0 = 0
379 378 oveq2d φ c C P 1 D P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 = P 1 ! P - 1 - c 0 ! 0
380 160 adantr φ c C P 1 D P 1 !
381 377 nnnn0d φ c C P 1 D P - 1 - c 0 0
382 381 faccld φ c C P 1 D P - 1 - c 0 !
383 382 nncnd φ c C P 1 D P - 1 - c 0 !
384 382 nnne0d φ c C P 1 D P - 1 - c 0 ! 0
385 380 383 384 divcld φ c C P 1 D P 1 ! P - 1 - c 0 !
386 385 mul01d φ c C P 1 D P 1 ! P - 1 - c 0 ! 0 = 0
387 244 379 386 3eqtrd φ c C P 1 D if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 = 0
388 387 oveq1d φ c C P 1 D if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j = 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j
389 235 55 sylan2 φ c C P 1 D j = 1 M if P < c j 0 P ! P c j ! 0 j P c j
390 389 zcnd φ c C P 1 D j = 1 M if P < c j 0 P ! P c j ! 0 j P c j
391 390 mul02d φ c C P 1 D 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j = 0
392 388 391 eqtrd φ c C P 1 D if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j = 0
393 392 oveq2d φ c C P 1 D P 1 ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j = P 1 ! j = 0 M c j ! 0
394 fzfid φ c C P 1 D 0 M Fin
395 33 277 sselid φ c C P 1 j 0 M c j 0
396 235 395 sylanl2 φ c C P 1 D j 0 M c j 0
397 396 faccld φ c C P 1 D j 0 M c j !
398 394 397 fprodnncl φ c C P 1 D j = 0 M c j !
399 398 nncnd φ c C P 1 D j = 0 M c j !
400 398 nnne0d φ c C P 1 D j = 0 M c j ! 0
401 380 399 400 divcld φ c C P 1 D P 1 ! j = 0 M c j !
402 401 mul01d φ c C P 1 D P 1 ! j = 0 M c j ! 0 = 0
403 393 402 eqtrd φ c C P 1 D P 1 ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j = 0
404 403 sumeq2dv φ c C P 1 D P 1 ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j = c C P 1 D 0
405 diffi C P 1 Fin C P 1 D Fin
406 19 405 syl φ C P 1 D Fin
407 406 olcd φ C P 1 D 0 C P 1 D Fin
408 sumz C P 1 D 0 C P 1 D Fin c C P 1 D 0 = 0
409 407 408 syl φ c C P 1 D 0 = 0
410 404 409 eqtrd φ c C P 1 D P 1 ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j = 0
411 234 410 oveq12d φ P 1 ! j = 0 M D j ! if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0 j = 1 M if P < D j 0 P ! P D j ! 0 j P D j + c C P 1 D P 1 ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j = P 1 ! j = 1 M j P + 0
412 232 addridd φ P 1 ! j = 1 M j P + 0 = P 1 ! j = 1 M j P
413 nfv j φ
414 413 205 227 219 fprodexp φ j = 1 M j P = j = 1 M j P
415 414 oveq2d φ P 1 ! j = 1 M j P = P 1 ! j = 1 M j P
416 411 412 415 3eqtrd φ P 1 ! j = 0 M D j ! if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! 0 P - 1 - D 0 j = 1 M if P < D j 0 P ! P D j ! 0 j P D j + c C P 1 D P 1 ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! 0 P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! 0 j P c j = P 1 ! j = 1 M j P
417 16 142 416 3eqtrd φ D n F P 1 0 = P 1 ! j = 1 M j P