Metamath Proof Explorer


Theorem etransclem38

Description: P divides the I -th derivative of F applied to J . if it is not the case that I = P - 1 and J = 0 . This is case 1 and the second part of case 2 proven in in Juillerat p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem38.p φ P
etransclem38.m φ M 0
etransclem38.f F = x x P 1 j = 1 M x j P
etransclem38.i φ I 0
etransclem38.j φ J 0 M
etransclem38.ij φ ¬ I = P 1 J = 0
etransclem38.c C = n 0 c 0 n 0 M | j = 0 M c j = n
Assertion etransclem38 φ P D n F I J P 1 !

Proof

Step Hyp Ref Expression
1 etransclem38.p φ P
2 etransclem38.m φ M 0
3 etransclem38.f F = x x P 1 j = 1 M x j P
4 etransclem38.i φ I 0
5 etransclem38.j φ J 0 M
6 etransclem38.ij φ ¬ I = P 1 J = 0
7 etransclem38.c C = n 0 c 0 n 0 M | j = 0 M c j = n
8 7 4 etransclem16 φ C I Fin
9 1 nnzd φ P
10 1 adantr φ c C I P
11 2 adantr φ c C I M 0
12 4 adantr φ c C I I 0
13 etransclem11 n 0 c 0 n 0 M | j = 0 M c j = n = m 0 e 0 m 0 M | k = 0 M e k = m
14 etransclem11 m 0 e 0 m 0 M | k = 0 M e k = m = n 0 d 0 n 0 M | j = 0 M d j = n
15 7 13 14 3eqtri C = n 0 d 0 n 0 M | j = 0 M d j = n
16 simpr φ c C I c C I
17 5 adantr φ c C I J 0 M
18 eqid I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j = I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j
19 10 11 12 15 16 17 18 etransclem28 φ c C I P 1 ! I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j
20 nnm1nn0 P P 1 0
21 1 20 syl φ P 1 0
22 21 faccld φ P 1 !
23 22 nnzd φ P 1 !
24 23 adantr φ c C I P 1 !
25 22 nnne0d φ P 1 ! 0
26 25 adantr φ c C I P 1 ! 0
27 5 elfzelzd φ J
28 27 adantr φ c C I J
29 10 11 12 28 15 16 etransclem26 φ c C I I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j
30 dvdsval2 P 1 ! P 1 ! 0 I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 ! I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
31 24 26 29 30 syl3anc φ c C I P 1 ! I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
32 19 31 mpbid φ c C I I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
33 pm3.22 J = 0 I = P 1 I = P 1 J = 0
34 33 adantll φ c C I J = 0 I = P 1 I = P 1 J = 0
35 6 ad3antrrr φ c C I J = 0 I = P 1 ¬ I = P 1 J = 0
36 34 35 pm2.65da φ c C I J = 0 ¬ I = P 1
37 36 neqned φ c C I J = 0 I P 1
38 1 ad3antrrr φ c C I J = 0 I P 1 P
39 2 ad3antrrr φ c C I J = 0 I P 1 M 0
40 4 ad3antrrr φ c C I J = 0 I P 1 I 0
41 simpr φ c C I J = 0 I P 1 I P 1
42 simplr φ c C I J = 0 I P 1 J = 0
43 16 ad2antrr φ c C I J = 0 I P 1 c C I
44 38 39 40 41 42 15 43 etransclem24 φ c C I J = 0 I P 1 P I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
45 37 44 mpdan φ c C I J = 0 P I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
46 1 ad2antrr φ c C I ¬ J = 0 P
47 2 ad2antrr φ c C I ¬ J = 0 M 0
48 4 ad2antrr φ c C I ¬ J = 0 I 0
49 7 4 etransclem12 φ C I = c 0 I 0 M | j = 0 M c j = I
50 49 adantr φ c C I C I = c 0 I 0 M | j = 0 M c j = I
51 16 50 eleqtrd φ c C I c c 0 I 0 M | j = 0 M c j = I
52 rabid c c 0 I 0 M | j = 0 M c j = I c 0 I 0 M j = 0 M c j = I
53 51 52 sylib φ c C I c 0 I 0 M j = 0 M c j = I
54 53 simpld φ c C I c 0 I 0 M
55 elmapi c 0 I 0 M c : 0 M 0 I
56 54 55 syl φ c C I c : 0 M 0 I
57 56 adantr φ c C I ¬ J = 0 c : 0 M 0 I
58 53 simprd φ c C I j = 0 M c j = I
59 58 adantr φ c C I ¬ J = 0 j = 0 M c j = I
60 1zzd φ ¬ J = 0 1
61 2 nn0zd φ M
62 61 adantr φ ¬ J = 0 M
63 27 adantr φ ¬ J = 0 J
64 elfznn0 J 0 M J 0
65 5 64 syl φ J 0
66 neqne ¬ J = 0 J 0
67 65 66 anim12i φ ¬ J = 0 J 0 J 0
68 elnnne0 J J 0 J 0
69 67 68 sylibr φ ¬ J = 0 J
70 69 nnge1d φ ¬ J = 0 1 J
71 elfzle2 J 0 M J M
72 5 71 syl φ J M
73 72 adantr φ ¬ J = 0 J M
74 60 62 63 70 73 elfzd φ ¬ J = 0 J 1 M
75 74 adantlr φ c C I ¬ J = 0 J 1 M
76 46 47 48 57 59 18 75 etransclem25 φ c C I ¬ J = 0 P ! I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j
77 1 nncnd φ P
78 1cnd φ 1
79 77 78 npcand φ P - 1 + 1 = P
80 79 eqcomd φ P = P - 1 + 1
81 80 fveq2d φ P ! = P - 1 + 1 !
82 facp1 P 1 0 P - 1 + 1 ! = P 1 ! P - 1 + 1
83 21 82 syl φ P - 1 + 1 ! = P 1 ! P - 1 + 1
84 79 oveq2d φ P 1 ! P - 1 + 1 = P 1 ! P
85 22 nncnd φ P 1 !
86 85 77 mulcomd φ P 1 ! P = P P 1 !
87 84 86 eqtrd φ P 1 ! P - 1 + 1 = P P 1 !
88 81 83 87 3eqtrrd φ P P 1 ! = P !
89 88 ad2antrr φ c C I ¬ J = 0 P P 1 ! = P !
90 29 zcnd φ c C I I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j
91 85 adantr φ c C I P 1 !
92 90 91 26 divcan1d φ c C I I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 ! P 1 ! = I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j
93 92 adantr φ c C I ¬ J = 0 I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 ! P 1 ! = I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j
94 76 89 93 3brtr4d φ c C I ¬ J = 0 P P 1 ! I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 ! P 1 !
95 9 ad2antrr φ c C I ¬ J = 0 P
96 32 adantr φ c C I ¬ J = 0 I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
97 23 ad2antrr φ c C I ¬ J = 0 P 1 !
98 25 ad2antrr φ c C I ¬ J = 0 P 1 ! 0
99 dvdsmulcr P I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 ! P 1 ! P 1 ! 0 P P 1 ! I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 ! P 1 ! P I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
100 95 96 97 98 99 syl112anc φ c C I ¬ J = 0 P P 1 ! I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 ! P 1 ! P I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
101 94 100 mpbid φ c C I ¬ J = 0 P I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
102 45 101 pm2.61dan φ c C I P I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
103 8 9 32 102 fsumdvds φ P c C I I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
104 reelprrecn
105 104 a1i φ
106 reopn topGen ran .
107 eqid TopOpen fld = TopOpen fld
108 107 tgioo2 topGen ran . = TopOpen fld 𝑡
109 106 108 eleqtri TopOpen fld 𝑡
110 109 a1i φ TopOpen fld 𝑡
111 etransclem5 k 0 M y y k if k = 0 P 1 P = j 0 M x x j if j = 0 P 1 P
112 fzssre 0 M
113 112 5 sselid φ J
114 105 110 1 2 3 4 111 7 113 etransclem31 φ D n F I J = c C I I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j
115 114 oveq1d φ D n F I J P 1 ! = c C I I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
116 8 85 90 25 fsumdivc φ c C I I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 ! = c C I I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
117 115 116 eqtrd φ D n F I J P 1 ! = c C I I ! j = 0 M c j ! if P 1 < c 0 0 P 1 ! P - 1 - c 0 ! J P - 1 - c 0 j = 1 M if P < c j 0 P ! P c j ! J j P c j P 1 !
118 103 117 breqtrrd φ P D n F I J P 1 !