Metamath Proof Explorer


Theorem etransclem39

Description: G is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem39.p φ P
etransclem39.m φ M 0
etransclem39.f F = x x P 1 j = 1 M x j P
etransclem39.g G = x i = 0 R D n F i x
Assertion etransclem39 φ G :

Proof

Step Hyp Ref Expression
1 etransclem39.p φ P
2 etransclem39.m φ M 0
3 etransclem39.f F = x x P 1 j = 1 M x j P
4 etransclem39.g G = x i = 0 R D n F i x
5 fzfid φ x 0 R Fin
6 reelprrecn
7 6 a1i φ i 0 R
8 reopn topGen ran .
9 eqid TopOpen fld = TopOpen fld
10 9 tgioo2 topGen ran . = TopOpen fld 𝑡
11 8 10 eleqtri TopOpen fld 𝑡
12 11 a1i φ i 0 R TopOpen fld 𝑡
13 1 adantr φ i 0 R P
14 2 adantr φ i 0 R M 0
15 elfznn0 i 0 R i 0
16 15 adantl φ i 0 R i 0
17 7 12 13 14 3 16 etransclem33 φ i 0 R D n F i :
18 17 adantlr φ x i 0 R D n F i :
19 simplr φ x i 0 R x
20 18 19 ffvelrnd φ x i 0 R D n F i x
21 5 20 fsumcl φ x i = 0 R D n F i x
22 21 4 fmptd φ G :