Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem4.a |
|
2 |
|
etransclem4.p |
|
3 |
|
etransclem4.M |
|
4 |
|
etransclem4.f |
|
5 |
|
etransclem4.h |
|
6 |
|
etransclem4.e |
|
7 |
|
simpr |
|
8 |
|
cnex |
|
9 |
8
|
ssex |
|
10 |
|
mptexg |
|
11 |
1 9 10
|
3syl |
|
12 |
11
|
adantr |
|
13 |
5
|
fvmpt2 |
|
14 |
7 12 13
|
syl2anc |
|
15 |
|
ovexd |
|
16 |
14 15
|
fvmpt2d |
|
17 |
16
|
an32s |
|
18 |
17
|
prodeq2dv |
|
19 |
|
nn0uz |
|
20 |
3 19
|
eleqtrdi |
|
21 |
20
|
adantr |
|
22 |
1
|
sselda |
|
23 |
22
|
adantr |
|
24 |
|
elfzelz |
|
25 |
24
|
zcnd |
|
26 |
25
|
adantl |
|
27 |
23 26
|
subcld |
|
28 |
|
nnm1nn0 |
|
29 |
2 28
|
syl |
|
30 |
2
|
nnnn0d |
|
31 |
29 30
|
ifcld |
|
32 |
31
|
ad2antrr |
|
33 |
27 32
|
expcld |
|
34 |
|
oveq2 |
|
35 |
|
iftrue |
|
36 |
34 35
|
oveq12d |
|
37 |
21 33 36
|
fprod1p |
|
38 |
22
|
subid1d |
|
39 |
38
|
oveq1d |
|
40 |
|
0p1e1 |
|
41 |
40
|
oveq1i |
|
42 |
41
|
a1i |
|
43 |
|
0red |
|
44 |
|
1red |
|
45 |
|
elfzelz |
|
46 |
45
|
zred |
|
47 |
|
0lt1 |
|
48 |
47
|
a1i |
|
49 |
|
elfzle1 |
|
50 |
43 44 46 48 49
|
ltletrd |
|
51 |
50
|
gt0ne0d |
|
52 |
51
|
neneqd |
|
53 |
52
|
iffalsed |
|
54 |
53
|
oveq2d |
|
55 |
54
|
adantl |
|
56 |
42 55
|
prodeq12rdv |
|
57 |
56
|
adantr |
|
58 |
39 57
|
oveq12d |
|
59 |
18 37 58
|
3eqtrrd |
|
60 |
59
|
mpteq2dva |
|
61 |
60 4 6
|
3eqtr4g |
|