Metamath Proof Explorer


Theorem etransclem4

Description: F expressed as a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem4.a φ A
etransclem4.p φ P
etransclem4.M φ M 0
etransclem4.f F = x A x P 1 j = 1 M x j P
etransclem4.h H = j 0 M x A x j if j = 0 P 1 P
etransclem4.e E = x A j = 0 M H j x
Assertion etransclem4 φ F = E

Proof

Step Hyp Ref Expression
1 etransclem4.a φ A
2 etransclem4.p φ P
3 etransclem4.M φ M 0
4 etransclem4.f F = x A x P 1 j = 1 M x j P
5 etransclem4.h H = j 0 M x A x j if j = 0 P 1 P
6 etransclem4.e E = x A j = 0 M H j x
7 simpr φ j 0 M j 0 M
8 cnex V
9 8 ssex A A V
10 mptexg A V x A x j if j = 0 P 1 P V
11 1 9 10 3syl φ x A x j if j = 0 P 1 P V
12 11 adantr φ j 0 M x A x j if j = 0 P 1 P V
13 5 fvmpt2 j 0 M x A x j if j = 0 P 1 P V H j = x A x j if j = 0 P 1 P
14 7 12 13 syl2anc φ j 0 M H j = x A x j if j = 0 P 1 P
15 ovexd φ j 0 M x A x j if j = 0 P 1 P V
16 14 15 fvmpt2d φ j 0 M x A H j x = x j if j = 0 P 1 P
17 16 an32s φ x A j 0 M H j x = x j if j = 0 P 1 P
18 17 prodeq2dv φ x A j = 0 M H j x = j = 0 M x j if j = 0 P 1 P
19 nn0uz 0 = 0
20 3 19 eleqtrdi φ M 0
21 20 adantr φ x A M 0
22 1 sselda φ x A x
23 22 adantr φ x A j 0 M x
24 elfzelz j 0 M j
25 24 zcnd j 0 M j
26 25 adantl φ x A j 0 M j
27 23 26 subcld φ x A j 0 M x j
28 nnm1nn0 P P 1 0
29 2 28 syl φ P 1 0
30 2 nnnn0d φ P 0
31 29 30 ifcld φ if j = 0 P 1 P 0
32 31 ad2antrr φ x A j 0 M if j = 0 P 1 P 0
33 27 32 expcld φ x A j 0 M x j if j = 0 P 1 P
34 oveq2 j = 0 x j = x 0
35 iftrue j = 0 if j = 0 P 1 P = P 1
36 34 35 oveq12d j = 0 x j if j = 0 P 1 P = x 0 P 1
37 21 33 36 fprod1p φ x A j = 0 M x j if j = 0 P 1 P = x 0 P 1 j = 0 + 1 M x j if j = 0 P 1 P
38 22 subid1d φ x A x 0 = x
39 38 oveq1d φ x A x 0 P 1 = x P 1
40 0p1e1 0 + 1 = 1
41 40 oveq1i 0 + 1 M = 1 M
42 41 a1i φ 0 + 1 M = 1 M
43 0red j 1 M 0
44 1red j 1 M 1
45 elfzelz j 1 M j
46 45 zred j 1 M j
47 0lt1 0 < 1
48 47 a1i j 1 M 0 < 1
49 elfzle1 j 1 M 1 j
50 43 44 46 48 49 ltletrd j 1 M 0 < j
51 50 gt0ne0d j 1 M j 0
52 51 neneqd j 1 M ¬ j = 0
53 52 iffalsed j 1 M if j = 0 P 1 P = P
54 53 oveq2d j 1 M x j if j = 0 P 1 P = x j P
55 54 adantl φ j 1 M x j if j = 0 P 1 P = x j P
56 42 55 prodeq12rdv φ j = 0 + 1 M x j if j = 0 P 1 P = j = 1 M x j P
57 56 adantr φ x A j = 0 + 1 M x j if j = 0 P 1 P = j = 1 M x j P
58 39 57 oveq12d φ x A x 0 P 1 j = 0 + 1 M x j if j = 0 P 1 P = x P 1 j = 1 M x j P
59 18 37 58 3eqtrrd φ x A x P 1 j = 1 M x j P = j = 0 M H j x
60 59 mpteq2dva φ x A x P 1 j = 1 M x j P = x A j = 0 M H j x
61 60 4 6 3eqtr4g φ F = E