Metamath Proof Explorer


Theorem etransclem43

Description: G is a continuous function. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem43.s φ S
etransclem43.x φ X TopOpen fld 𝑡 S
etransclem43.p φ P
etransclem43.m φ M 0
etransclem43.f F = x X x P 1 j = 1 M x j P
etransclem43.g G = x X i = 0 R S D n F i x
Assertion etransclem43 φ G : X cn

Proof

Step Hyp Ref Expression
1 etransclem43.s φ S
2 etransclem43.x φ X TopOpen fld 𝑡 S
3 etransclem43.p φ P
4 etransclem43.m φ M 0
5 etransclem43.f F = x X x P 1 j = 1 M x j P
6 etransclem43.g G = x X i = 0 R S D n F i x
7 1 2 dvdmsscn φ X
8 fzfid φ 0 R Fin
9 1 adantr φ i 0 R S
10 2 adantr φ i 0 R X TopOpen fld 𝑡 S
11 3 adantr φ i 0 R P
12 4 adantr φ i 0 R M 0
13 elfznn0 i 0 R i 0
14 13 adantl φ i 0 R i 0
15 9 10 11 12 5 14 etransclem33 φ i 0 R S D n F i : X
16 15 feqmptd φ i 0 R S D n F i = x X S D n F i x
17 9 10 11 12 5 14 etransclem40 φ i 0 R S D n F i : X cn
18 16 17 eqeltrrd φ i 0 R x X S D n F i x : X cn
19 7 8 18 fsumcncf φ x X i = 0 R S D n F i x : X cn
20 6 19 eqeltrid φ G : X cn