Metamath Proof Explorer


Theorem etransclem44

Description: The given finite sum is nonzero. This is the claim proved after equation (7) in Juillerat p. 12 . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem44.a φ A : 0
etransclem44.a0 φ A 0 0
etransclem44.m φ M 0
etransclem44.p φ P
etransclem44.ap φ A 0 < P
etransclem44.mp φ M ! < P
etransclem44.f F = x x P 1 j = 1 M x j P
etransclem44.k K = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
Assertion etransclem44 φ K 0

Proof

Step Hyp Ref Expression
1 etransclem44.a φ A : 0
2 etransclem44.a0 φ A 0 0
3 etransclem44.m φ M 0
4 etransclem44.p φ P
5 etransclem44.ap φ A 0 < P
6 etransclem44.mp φ M ! < P
7 etransclem44.f F = x x P 1 j = 1 M x j P
8 etransclem44.k K = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
9 8 a1i φ K = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
10 nfv k φ
11 nfcv _ k A 0 D n F P 1 0
12 fzfi 0 M Fin
13 fzfi 0 M P + P - 1 Fin
14 xpfi 0 M Fin 0 M P + P - 1 Fin 0 M × 0 M P + P - 1 Fin
15 12 13 14 mp2an 0 M × 0 M P + P - 1 Fin
16 15 a1i φ 0 M × 0 M P + P - 1 Fin
17 1 adantr φ k 0 M × 0 M P + P - 1 A : 0
18 fzssnn0 0 M 0
19 xp1st k 0 M × 0 M P + P - 1 1 st k 0 M
20 18 19 sselid k 0 M × 0 M P + P - 1 1 st k 0
21 20 adantl φ k 0 M × 0 M P + P - 1 1 st k 0
22 17 21 ffvelrnd φ k 0 M × 0 M P + P - 1 A 1 st k
23 reelprrecn
24 23 a1i φ k 0 M × 0 M P + P - 1
25 reopn topGen ran .
26 eqid TopOpen fld = TopOpen fld
27 26 tgioo2 topGen ran . = TopOpen fld 𝑡
28 25 27 eleqtri TopOpen fld 𝑡
29 28 a1i φ k 0 M × 0 M P + P - 1 TopOpen fld 𝑡
30 prmnn P P
31 4 30 syl φ P
32 31 adantr φ k 0 M × 0 M P + P - 1 P
33 3 adantr φ k 0 M × 0 M P + P - 1 M 0
34 xp2nd k 0 M × 0 M P + P - 1 2 nd k 0 M P + P - 1
35 elfznn0 2 nd k 0 M P + P - 1 2 nd k 0
36 34 35 syl k 0 M × 0 M P + P - 1 2 nd k 0
37 36 adantl φ k 0 M × 0 M P + P - 1 2 nd k 0
38 21 nn0red φ k 0 M × 0 M P + P - 1 1 st k
39 21 nn0zd φ k 0 M × 0 M P + P - 1 1 st k
40 24 29 32 33 7 37 38 39 etransclem42 φ k 0 M × 0 M P + P - 1 D n F 2 nd k 1 st k
41 22 40 zmulcld φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k
42 41 zcnd φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k
43 nn0uz 0 = 0
44 3 43 eleqtrdi φ M 0
45 eluzfz1 M 0 0 0 M
46 44 45 syl φ 0 0 M
47 0zd φ 0
48 3 nn0zd φ M
49 31 nnzd φ P
50 48 49 zmulcld φ M P
51 nnm1nn0 P P 1 0
52 31 51 syl φ P 1 0
53 52 nn0zd φ P 1
54 50 53 zaddcld φ M P + P - 1
55 52 nn0ge0d φ 0 P 1
56 31 nnnn0d φ P 0
57 3 56 nn0mulcld φ M P 0
58 57 nn0ge0d φ 0 M P
59 52 nn0red φ P 1
60 50 zred φ M P
61 59 60 addge02d φ 0 M P P 1 M P + P - 1
62 58 61 mpbid φ P 1 M P + P - 1
63 47 54 53 55 62 elfzd φ P 1 0 M P + P - 1
64 opelxp 0 P 1 0 M × 0 M P + P - 1 0 0 M P 1 0 M P + P - 1
65 46 63 64 sylanbrc φ 0 P 1 0 M × 0 M P + P - 1
66 fveq2 k = 0 P 1 1 st k = 1 st 0 P 1
67 0re 0
68 ovex P 1 V
69 op1stg 0 P 1 V 1 st 0 P 1 = 0
70 67 68 69 mp2an 1 st 0 P 1 = 0
71 66 70 eqtrdi k = 0 P 1 1 st k = 0
72 71 fveq2d k = 0 P 1 A 1 st k = A 0
73 fveq2 k = 0 P 1 2 nd k = 2 nd 0 P 1
74 op2ndg 0 P 1 V 2 nd 0 P 1 = P 1
75 67 68 74 mp2an 2 nd 0 P 1 = P 1
76 73 75 eqtrdi k = 0 P 1 2 nd k = P 1
77 76 fveq2d k = 0 P 1 D n F 2 nd k = D n F P 1
78 77 71 fveq12d k = 0 P 1 D n F 2 nd k 1 st k = D n F P 1 0
79 72 78 oveq12d k = 0 P 1 A 1 st k D n F 2 nd k 1 st k = A 0 D n F P 1 0
80 10 11 16 42 65 79 fsumsplit1 φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k = A 0 D n F P 1 0 + k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k
81 80 oveq1d φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = A 0 D n F P 1 0 + k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
82 18 46 sselid φ 0 0
83 1 82 ffvelrnd φ A 0
84 23 a1i φ
85 28 a1i φ TopOpen fld 𝑡
86 67 a1i φ 0
87 84 85 31 3 7 52 86 47 etransclem42 φ D n F P 1 0
88 83 87 zmulcld φ A 0 D n F P 1 0
89 88 zcnd φ A 0 D n F P 1 0
90 difss 0 M × 0 M P + P - 1 0 P 1 0 M × 0 M P + P - 1
91 ssfi 0 M × 0 M P + P - 1 Fin 0 M × 0 M P + P - 1 0 P 1 0 M × 0 M P + P - 1 0 M × 0 M P + P - 1 0 P 1 Fin
92 15 90 91 mp2an 0 M × 0 M P + P - 1 0 P 1 Fin
93 92 a1i φ 0 M × 0 M P + P - 1 0 P 1 Fin
94 eldifi k 0 M × 0 M P + P - 1 0 P 1 k 0 M × 0 M P + P - 1
95 94 41 sylan2 φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k
96 93 95 fsumzcl φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k
97 96 zcnd φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k
98 52 faccld φ P 1 !
99 98 nncnd φ P 1 !
100 98 nnne0d φ P 1 ! 0
101 89 97 99 100 divdird φ A 0 D n F P 1 0 + k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = A 0 D n F P 1 0 P 1 ! + k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
102 9 81 101 3eqtrd φ K = A 0 D n F P 1 0 P 1 ! + k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
103 31 nnne0d φ P 0
104 83 zcnd φ A 0
105 87 zcnd φ D n F P 1 0
106 104 105 99 100 divassd φ A 0 D n F P 1 0 P 1 ! = A 0 D n F P 1 0 P 1 !
107 etransclem5 k 0 M y y k if k = 0 P 1 P = j 0 M x x j if j = 0 P 1 P
108 etransclem11 m 0 d 0 m 0 M | k = 0 M d k = m = n 0 c 0 n 0 M | j = 0 M c j = n
109 84 85 31 3 7 52 107 108 46 86 etransclem37 φ P 1 ! D n F P 1 0
110 98 nnzd φ P 1 !
111 dvdsval2 P 1 ! P 1 ! 0 D n F P 1 0 P 1 ! D n F P 1 0 D n F P 1 0 P 1 !
112 110 100 87 111 syl3anc φ P 1 ! D n F P 1 0 D n F P 1 0 P 1 !
113 109 112 mpbid φ D n F P 1 0 P 1 !
114 83 113 zmulcld φ A 0 D n F P 1 0 P 1 !
115 106 114 eqeltrd φ A 0 D n F P 1 0 P 1 !
116 94 42 sylan2 φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k
117 93 99 116 100 fsumdivc φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
118 22 zcnd φ k 0 M × 0 M P + P - 1 A 1 st k
119 94 118 sylan2 φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k
120 94 40 sylan2 φ k 0 M × 0 M P + P - 1 0 P 1 D n F 2 nd k 1 st k
121 120 zcnd φ k 0 M × 0 M P + P - 1 0 P 1 D n F 2 nd k 1 st k
122 99 adantr φ k 0 M × 0 M P + P - 1 0 P 1 P 1 !
123 100 adantr φ k 0 M × 0 M P + P - 1 0 P 1 P 1 ! 0
124 119 121 122 123 divassd φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = A 1 st k D n F 2 nd k 1 st k P 1 !
125 94 22 sylan2 φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k
126 23 a1i φ k 0 M × 0 M P + P - 1 0 P 1
127 28 a1i φ k 0 M × 0 M P + P - 1 0 P 1 TopOpen fld 𝑡
128 31 adantr φ k 0 M × 0 M P + P - 1 0 P 1 P
129 3 adantr φ k 0 M × 0 M P + P - 1 0 P 1 M 0
130 94 adantl φ k 0 M × 0 M P + P - 1 0 P 1 k 0 M × 0 M P + P - 1
131 130 36 syl φ k 0 M × 0 M P + P - 1 0 P 1 2 nd k 0
132 130 19 syl φ k 0 M × 0 M P + P - 1 0 P 1 1 st k 0 M
133 94 38 sylan2 φ k 0 M × 0 M P + P - 1 0 P 1 1 st k
134 126 127 128 129 7 131 107 108 132 133 etransclem37 φ k 0 M × 0 M P + P - 1 0 P 1 P 1 ! D n F 2 nd k 1 st k
135 110 adantr φ k 0 M × 0 M P + P - 1 0 P 1 P 1 !
136 dvdsval2 P 1 ! P 1 ! 0 D n F 2 nd k 1 st k P 1 ! D n F 2 nd k 1 st k D n F 2 nd k 1 st k P 1 !
137 135 123 120 136 syl3anc φ k 0 M × 0 M P + P - 1 0 P 1 P 1 ! D n F 2 nd k 1 st k D n F 2 nd k 1 st k P 1 !
138 134 137 mpbid φ k 0 M × 0 M P + P - 1 0 P 1 D n F 2 nd k 1 st k P 1 !
139 125 138 zmulcld φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
140 124 139 eqeltrd φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
141 93 140 fsumzcl φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
142 117 141 eqeltrd φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
143 1zzd φ 1
144 zabscl A 0 A 0
145 83 144 syl φ A 0
146 nn0abscl A 0 A 0 0
147 83 146 syl φ A 0 0
148 104 2 absne0d φ A 0 0
149 elnnne0 A 0 A 0 0 A 0 0
150 147 148 149 sylanbrc φ A 0
151 150 nnge1d φ 1 A 0
152 zltlem1 A 0 P A 0 < P A 0 P 1
153 145 49 152 syl2anc φ A 0 < P A 0 P 1
154 5 153 mpbid φ A 0 P 1
155 143 53 145 151 154 elfzd φ A 0 1 P 1
156 fzm1ndvds P A 0 1 P 1 ¬ P A 0
157 31 155 156 syl2anc φ ¬ P A 0
158 dvdsabsb P A 0 P A 0 P A 0
159 49 83 158 syl2anc φ P A 0 P A 0
160 157 159 mtbird φ ¬ P A 0
161 3 4 6 7 etransclem41 φ ¬ P D n F P 1 0 P 1 !
162 160 161 jca φ ¬ P A 0 ¬ P D n F P 1 0 P 1 !
163 pm4.56 ¬ P A 0 ¬ P D n F P 1 0 P 1 ! ¬ P A 0 P D n F P 1 0 P 1 !
164 162 163 sylib φ ¬ P A 0 P D n F P 1 0 P 1 !
165 euclemma P A 0 D n F P 1 0 P 1 ! P A 0 D n F P 1 0 P 1 ! P A 0 P D n F P 1 0 P 1 !
166 4 83 113 165 syl3anc φ P A 0 D n F P 1 0 P 1 ! P A 0 P D n F P 1 0 P 1 !
167 164 166 mtbird φ ¬ P A 0 D n F P 1 0 P 1 !
168 106 breq2d φ P A 0 D n F P 1 0 P 1 ! P A 0 D n F P 1 0 P 1 !
169 167 168 mtbird φ ¬ P A 0 D n F P 1 0 P 1 !
170 49 adantr φ k 0 M × 0 M P + P - 1 0 P 1 P
171 170 125 138 3jca φ k 0 M × 0 M P + P - 1 0 P 1 P A 1 st k D n F 2 nd k 1 st k P 1 !
172 eldifn k 0 M × 0 M P + P - 1 0 P 1 ¬ k 0 P 1
173 94 adantr k 0 M × 0 M P + P - 1 0 P 1 2 nd k = P 1 1 st k = 0 k 0 M × 0 M P + P - 1
174 1st2nd2 k 0 M × 0 M P + P - 1 k = 1 st k 2 nd k
175 173 174 syl k 0 M × 0 M P + P - 1 0 P 1 2 nd k = P 1 1 st k = 0 k = 1 st k 2 nd k
176 simpr 2 nd k = P 1 1 st k = 0 1 st k = 0
177 simpl 2 nd k = P 1 1 st k = 0 2 nd k = P 1
178 176 177 opeq12d 2 nd k = P 1 1 st k = 0 1 st k 2 nd k = 0 P 1
179 178 adantl k 0 M × 0 M P + P - 1 0 P 1 2 nd k = P 1 1 st k = 0 1 st k 2 nd k = 0 P 1
180 175 179 eqtrd k 0 M × 0 M P + P - 1 0 P 1 2 nd k = P 1 1 st k = 0 k = 0 P 1
181 velsn k 0 P 1 k = 0 P 1
182 180 181 sylibr k 0 M × 0 M P + P - 1 0 P 1 2 nd k = P 1 1 st k = 0 k 0 P 1
183 172 182 mtand k 0 M × 0 M P + P - 1 0 P 1 ¬ 2 nd k = P 1 1 st k = 0
184 183 adantl φ k 0 M × 0 M P + P - 1 0 P 1 ¬ 2 nd k = P 1 1 st k = 0
185 128 129 7 131 132 184 108 etransclem38 φ k 0 M × 0 M P + P - 1 0 P 1 P D n F 2 nd k 1 st k P 1 !
186 dvdsmultr2 P A 1 st k D n F 2 nd k 1 st k P 1 ! P D n F 2 nd k 1 st k P 1 ! P A 1 st k D n F 2 nd k 1 st k P 1 !
187 171 185 186 sylc φ k 0 M × 0 M P + P - 1 0 P 1 P A 1 st k D n F 2 nd k 1 st k P 1 !
188 187 124 breqtrrd φ k 0 M × 0 M P + P - 1 0 P 1 P A 1 st k D n F 2 nd k 1 st k P 1 !
189 93 49 140 188 fsumdvds φ P k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
190 189 117 breqtrrd φ P k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
191 49 103 115 142 169 190 etransclem9 φ A 0 D n F P 1 0 P 1 ! + k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 ! 0
192 102 191 eqnetrd φ K 0