Metamath Proof Explorer


Theorem etransclem48

Description: _e is transcendental. Section *5 of Juillerat p. 11 can be used as a reference for this proof. In this lemma, a large enough prime p is chosen: it will be used by subsequent lemmas. (Contributed by Glauco Siliprandi, 5-Apr-2020) (Revised by AV, 28-Sep-2020)

Ref Expression
Hypotheses etransclem48.q φ Q Poly 0 𝑝
etransclem48.qe0 φ Q e = 0
etransclem48.a A = coeff Q
etransclem48.a0 φ A 0 0
etransclem48.m M = deg Q
etransclem48.c C = j = 0 M A j e j M M M + 1
etransclem48.s S = n 0 C M M + 1 n n !
etransclem48.i I = sup i 0 | n i S n < 1 <
etransclem48.t T = sup A 0 M ! I * <
Assertion etransclem48 φ k k 0 k < 1

Proof

Step Hyp Ref Expression
1 etransclem48.q φ Q Poly 0 𝑝
2 etransclem48.qe0 φ Q e = 0
3 etransclem48.a A = coeff Q
4 etransclem48.a0 φ A 0 0
5 etransclem48.m M = deg Q
6 etransclem48.c C = j = 0 M A j e j M M M + 1
7 etransclem48.s S = n 0 C M M + 1 n n !
8 etransclem48.i I = sup i 0 | n i S n < 1 <
9 etransclem48.t T = sup A 0 M ! I * <
10 1 eldifad φ Q Poly
11 0zd φ 0
12 3 coef2 Q Poly 0 A : 0
13 10 11 12 syl2anc φ A : 0
14 0nn0 0 0
15 14 a1i φ 0 0
16 13 15 ffvelrnd φ A 0
17 zabscl A 0 A 0
18 16 17 syl φ A 0
19 dgrcl Q Poly deg Q 0
20 10 19 syl φ deg Q 0
21 5 20 eqeltrid φ M 0
22 21 faccld φ M !
23 22 nnzd φ M !
24 ssrab2 i 0 | n i S n < 1 0
25 nn0ssz 0
26 24 25 sstri i 0 | n i S n < 1
27 nn0uz 0 = 0
28 24 27 sseqtri i 0 | n i S n < 1 0
29 1rp 1 +
30 nfv n φ
31 nfmpt1 _ n n 0 C
32 nfmpt1 _ n n 0 M M + 1 n n !
33 nfmpt1 _ n n 0 C M M + 1 n n !
34 7 33 nfcxfr _ n S
35 nn0ex 0 V
36 35 mptex n 0 C V
37 36 a1i φ n 0 C V
38 fzfid φ 0 M Fin
39 13 adantr φ j 0 M A : 0
40 elfznn0 j 0 M j 0
41 40 adantl φ j 0 M j 0
42 39 41 ffvelrnd φ j 0 M A j
43 42 zcnd φ j 0 M A j
44 ere e
45 44 recni e
46 45 a1i φ j 0 M e
47 elfzelz j 0 M j
48 47 zcnd j 0 M j
49 48 adantl φ j 0 M j
50 46 49 cxpcld φ j 0 M e j
51 43 50 mulcld φ j 0 M A j e j
52 51 abscld φ j 0 M A j e j
53 52 recnd φ j 0 M A j e j
54 21 nn0cnd φ M
55 peano2nn0 M 0 M + 1 0
56 21 55 syl φ M + 1 0
57 54 56 expcld φ M M + 1
58 54 57 mulcld φ M M M + 1
59 58 adantr φ j 0 M M M M + 1
60 53 59 mulcld φ j 0 M A j e j M M M + 1
61 38 60 fsumcl φ j = 0 M A j e j M M M + 1
62 6 61 eqeltrid φ C
63 eqidd φ i 0 n 0 C = n 0 C
64 eqidd φ i 0 n = i C = C
65 simpr φ i 0 i 0
66 62 adantr φ i 0 C
67 63 64 65 66 fvmptd φ i 0 n 0 C i = C
68 27 11 37 62 67 climconst φ n 0 C C
69 35 mptex n 0 C M M + 1 n n ! V
70 7 69 eqeltri S V
71 70 a1i φ S V
72 eqid n 0 M M + 1 n n ! = n 0 M M + 1 n n !
73 72 expfac M M + 1 n 0 M M + 1 n n ! 0
74 57 73 syl φ n 0 M M + 1 n n ! 0
75 simpr φ n 0 n 0
76 62 adantr φ n 0 C
77 eqid n 0 C = n 0 C
78 77 fvmpt2 n 0 C n 0 C n = C
79 75 76 78 syl2anc φ n 0 n 0 C n = C
80 79 76 eqeltrd φ n 0 n 0 C n
81 ovex M M + 1 n n ! V
82 72 fvmpt2 n 0 M M + 1 n n ! V n 0 M M + 1 n n ! n = M M + 1 n n !
83 81 82 mpan2 n 0 n 0 M M + 1 n n ! n = M M + 1 n n !
84 83 adantl φ n 0 n 0 M M + 1 n n ! n = M M + 1 n n !
85 57 adantr φ n 0 M M + 1
86 85 75 expcld φ n 0 M M + 1 n
87 75 faccld φ n 0 n !
88 87 nncnd φ n 0 n !
89 87 nnne0d φ n 0 n ! 0
90 86 88 89 divcld φ n 0 M M + 1 n n !
91 84 90 eqeltrd φ n 0 n 0 M M + 1 n n ! n
92 ovex C M M + 1 n n ! V
93 7 fvmpt2 n 0 C M M + 1 n n ! V S n = C M M + 1 n n !
94 92 93 mpan2 n 0 S n = C M M + 1 n n !
95 94 adantl φ n 0 S n = C M M + 1 n n !
96 79 84 oveq12d φ n 0 n 0 C n n 0 M M + 1 n n ! n = C M M + 1 n n !
97 95 96 eqtr4d φ n 0 S n = n 0 C n n 0 M M + 1 n n ! n
98 30 31 32 34 27 11 68 71 74 80 91 97 climmulf φ S C 0
99 62 mul01d φ C 0 = 0
100 98 99 breqtrd φ S 0
101 eqidd φ n 0 S n = S n
102 80 91 mulcld φ n 0 n 0 C n n 0 M M + 1 n n ! n
103 97 102 eqeltrd φ n 0 S n
104 34 27 11 71 101 103 clim0cf φ S 0 e + i 0 n i S n < e
105 100 104 mpbid φ e + i 0 n i S n < e
106 breq2 e = 1 S n < e S n < 1
107 106 rexralbidv e = 1 i 0 n i S n < e i 0 n i S n < 1
108 107 rspcva 1 + e + i 0 n i S n < e i 0 n i S n < 1
109 29 105 108 sylancr φ i 0 n i S n < 1
110 rabn0 i 0 | n i S n < 1 i 0 n i S n < 1
111 109 110 sylibr φ i 0 | n i S n < 1
112 infssuzcl i 0 | n i S n < 1 0 i 0 | n i S n < 1 sup i 0 | n i S n < 1 < i 0 | n i S n < 1
113 28 111 112 sylancr φ sup i 0 | n i S n < 1 < i 0 | n i S n < 1
114 8 113 eqeltrid φ I i 0 | n i S n < 1
115 26 114 sselid φ I
116 tpssi A 0 M ! I A 0 M ! I
117 18 23 115 116 syl3anc φ A 0 M ! I
118 xrltso < Or *
119 118 a1i φ < Or *
120 tpfi A 0 M ! I Fin
121 120 a1i φ A 0 M ! I Fin
122 18 tpnzd φ A 0 M ! I
123 zssre
124 ressxr *
125 123 124 sstri *
126 117 125 sstrdi φ A 0 M ! I *
127 fisupcl < Or * A 0 M ! I Fin A 0 M ! I A 0 M ! I * sup A 0 M ! I * < A 0 M ! I
128 119 121 122 126 127 syl13anc φ sup A 0 M ! I * < A 0 M ! I
129 9 128 eqeltrid φ T A 0 M ! I
130 117 129 sseldd φ T
131 0red φ 0
132 22 nnred φ M !
133 130 zred φ T
134 22 nngt0d φ 0 < M !
135 fvex M ! V
136 135 tpid2 M ! A 0 M ! I
137 supxrub A 0 M ! I * M ! A 0 M ! I M ! sup A 0 M ! I * <
138 126 136 137 sylancl φ M ! sup A 0 M ! I * <
139 138 9 breqtrrdi φ M ! T
140 131 132 133 134 139 ltletrd φ 0 < T
141 elnnz T T 0 < T
142 130 140 141 sylanbrc φ T
143 prmunb T p T < p
144 142 143 syl φ p T < p
145 1 3ad2ant1 φ p T < p Q Poly 0 𝑝
146 2 3ad2ant1 φ p T < p Q e = 0
147 4 3ad2ant1 φ p T < p A 0 0
148 simp2 φ p T < p p
149 16 zcnd φ A 0
150 149 3ad2ant1 φ p T < p A 0
151 150 abscld φ p T < p A 0
152 133 3ad2ant1 φ p T < p T
153 prmz p p
154 153 zred p p
155 154 3ad2ant2 φ p T < p p
156 126 adantr φ p A 0 M ! I *
157 fvex A 0 V
158 157 tpid1 A 0 A 0 M ! I
159 supxrub A 0 M ! I * A 0 A 0 M ! I A 0 sup A 0 M ! I * <
160 156 158 159 sylancl φ p A 0 sup A 0 M ! I * <
161 160 9 breqtrrdi φ p A 0 T
162 161 3adant3 φ p T < p A 0 T
163 simp3 φ p T < p T < p
164 151 152 155 162 163 lelttrd φ p T < p A 0 < p
165 132 3ad2ant1 φ p T < p M !
166 139 3ad2ant1 φ p T < p M ! T
167 165 152 155 166 163 lelttrd φ p T < p M ! < p
168 6 a1i n = p 1 C = j = 0 M A j e j M M M + 1
169 oveq2 n = p 1 M M + 1 n = M M + 1 p 1
170 fveq2 n = p 1 n ! = p 1 !
171 169 170 oveq12d n = p 1 M M + 1 n n ! = M M + 1 p 1 p 1 !
172 168 171 oveq12d n = p 1 C M M + 1 n n ! = j = 0 M A j e j M M M + 1 M M + 1 p 1 p 1 !
173 prmnn p p
174 nnm1nn0 p p 1 0
175 173 174 syl p p 1 0
176 175 adantl φ p p 1 0
177 61 adantr φ p j = 0 M A j e j M M M + 1
178 57 adantr φ p M M + 1
179 178 176 expcld φ p M M + 1 p 1
180 175 faccld p p 1 !
181 180 nncnd p p 1 !
182 181 adantl φ p p 1 !
183 180 nnne0d p p 1 ! 0
184 183 adantl φ p p 1 ! 0
185 179 182 184 divcld φ p M M + 1 p 1 p 1 !
186 177 185 mulcld φ p j = 0 M A j e j M M M + 1 M M + 1 p 1 p 1 !
187 7 172 176 186 fvmptd3 φ p S p 1 = j = 0 M A j e j M M M + 1 M M + 1 p 1 p 1 !
188 187 eqcomd φ p j = 0 M A j e j M M M + 1 M M + 1 p 1 p 1 ! = S p 1
189 188 3adant3 φ p T < p j = 0 M A j e j M M M + 1 M M + 1 p 1 p 1 ! = S p 1
190 115 3ad2ant1 φ p T < p I
191 1zzd p 1
192 153 191 zsubcld p p 1
193 192 3ad2ant2 φ p T < p p 1
194 190 zred φ p T < p I
195 tpid3g I I A 0 M ! I
196 115 195 syl φ I A 0 M ! I
197 supxrub A 0 M ! I * I A 0 M ! I I sup A 0 M ! I * <
198 126 196 197 syl2anc φ I sup A 0 M ! I * <
199 198 9 breqtrrdi φ I T
200 199 3ad2ant1 φ p T < p I T
201 194 152 155 200 163 lelttrd φ p T < p I < p
202 153 3ad2ant2 φ p T < p p
203 zltlem1 I p I < p I p 1
204 190 202 203 syl2anc φ p T < p I < p I p 1
205 201 204 mpbid φ p T < p I p 1
206 eluz2 p 1 I I p 1 I p 1
207 190 193 205 206 syl3anbrc φ p T < p p 1 I
208 114 3ad2ant1 φ p T < p I i 0 | n i S n < 1
209 fveq2 i = I i = I
210 209 raleqdv i = I n i S n < 1 n I S n < 1
211 210 elrab I i 0 | n i S n < 1 I 0 n I S n < 1
212 208 211 sylib φ p T < p I 0 n I S n < 1
213 212 simprd φ p T < p n I S n < 1
214 nfcv _ n abs
215 nfcv _ n p 1
216 34 215 nffv _ n S p 1
217 214 216 nffv _ n S p 1
218 nfcv _ n <
219 nfcv _ n 1
220 217 218 219 nfbr n S p 1 < 1
221 2fveq3 n = p 1 S n = S p 1
222 221 breq1d n = p 1 S n < 1 S p 1 < 1
223 220 222 rspc p 1 I n I S n < 1 S p 1 < 1
224 207 213 223 sylc φ p T < p S p 1 < 1
225 171 oveq2d n = p 1 C M M + 1 n n ! = C M M + 1 p 1 p 1 !
226 ovexd φ p C M M + 1 p 1 p 1 ! V
227 7 225 176 226 fvmptd3 φ p S p 1 = C M M + 1 p 1 p 1 !
228 21 nn0red φ M
229 228 56 reexpcld φ M M + 1
230 228 229 remulcld φ M M M + 1
231 230 adantr φ j 0 M M M M + 1
232 52 231 remulcld φ j 0 M A j e j M M M + 1
233 38 232 fsumrecl φ j = 0 M A j e j M M M + 1
234 6 233 eqeltrid φ C
235 234 adantr φ p C
236 229 adantr φ p M M + 1
237 236 176 reexpcld φ p M M + 1 p 1
238 180 nnred p p 1 !
239 238 adantl φ p p 1 !
240 237 239 184 redivcld φ p M M + 1 p 1 p 1 !
241 235 240 remulcld φ p C M M + 1 p 1 p 1 !
242 227 241 eqeltrd φ p S p 1
243 242 3adant3 φ p T < p S p 1
244 1red φ p T < p 1
245 243 244 absltd φ p T < p S p 1 < 1 1 < S p 1 S p 1 < 1
246 224 245 mpbid φ p T < p 1 < S p 1 S p 1 < 1
247 246 simprd φ p T < p S p 1 < 1
248 189 247 eqbrtrd φ p T < p j = 0 M A j e j M M M + 1 M M + 1 p 1 p 1 ! < 1
249 etransclem6 y y p 1 z = 1 M y z p = x x p 1 j = 1 M x j p
250 eqid j = 0 M A j e j 0 j e x y y p 1 z = 1 M y z p x dx = j = 0 M A j e j 0 j e x y y p 1 z = 1 M y z p x dx
251 eqid j = 0 M A j e j 0 j e x y y p 1 z = 1 M y z p x dx p 1 ! = j = 0 M A j e j 0 j e x y y p 1 z = 1 M y z p x dx p 1 !
252 145 146 3 147 5 148 164 167 248 249 250 251 etransclem47 φ p T < p k k 0 k < 1
253 252 rexlimdv3a φ p T < p k k 0 k < 1
254 144 253 mpd φ k k 0 k < 1