Metamath Proof Explorer


Theorem etransclem6

Description: A change of bound variable, often used in proofs for etransc . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion etransclem6 x x P 1 j = 1 M x j P = y y P 1 k = 1 M y k P

Proof

Step Hyp Ref Expression
1 oveq1 x = y x P 1 = y P 1
2 oveq2 j = k x j = x k
3 2 oveq1d j = k x j P = x k P
4 3 cbvprodv j = 1 M x j P = k = 1 M x k P
5 oveq1 x = y x k = y k
6 5 oveq1d x = y x k P = y k P
7 6 prodeq2ad x = y k = 1 M x k P = k = 1 M y k P
8 4 7 syl5eq x = y j = 1 M x j P = k = 1 M y k P
9 1 8 oveq12d x = y x P 1 j = 1 M x j P = y P 1 k = 1 M y k P
10 9 cbvmptv x x P 1 j = 1 M x j P = y y P 1 k = 1 M y k P