Metamath Proof Explorer


Theorem etransclem8

Description: F is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem8.x φ X
etransclem8.p φ P
etransclem8.f F = x X x P 1 j = 1 M x j P
Assertion etransclem8 φ F : X

Proof

Step Hyp Ref Expression
1 etransclem8.x φ X
2 etransclem8.p φ P
3 etransclem8.f F = x X x P 1 j = 1 M x j P
4 1 sselda φ x X x
5 2 adantr φ x X P
6 nnm1nn0 P P 1 0
7 5 6 syl φ x X P 1 0
8 4 7 expcld φ x X x P 1
9 fzfid φ x X 1 M Fin
10 4 adantr φ x X j 1 M x
11 elfzelz j 1 M j
12 11 zcnd j 1 M j
13 12 adantl φ x X j 1 M j
14 10 13 subcld φ x X j 1 M x j
15 2 nnnn0d φ P 0
16 15 ad2antrr φ x X j 1 M P 0
17 14 16 expcld φ x X j 1 M x j P
18 9 17 fprodcl φ x X j = 1 M x j P
19 8 18 mulcld φ x X x P 1 j = 1 M x j P
20 19 3 fmptd φ F : X