Metamath Proof Explorer


Theorem eu2

Description: An alternate way of defining existential uniqueness. Definition 6.10 of TakeutiZaring p. 26. (Contributed by NM, 8-Jul-1994) (Proof shortened by Wolf Lammen, 2-Dec-2018)

Ref Expression
Hypothesis eu2.nf y φ
Assertion eu2 ∃! x φ x φ x y φ y x φ x = y

Proof

Step Hyp Ref Expression
1 eu2.nf y φ
2 df-eu ∃! x φ x φ * x φ
3 1 mo3 * x φ x y φ y x φ x = y
4 3 anbi2i x φ * x φ x φ x y φ y x φ x = y
5 2 4 bitri ∃! x φ x φ x y φ y x φ x = y