Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Uniqueness and unique existence
Unique existence: the unique existential quantifier
eu4
Next ⟩
euimmo
Metamath Proof Explorer
Ascii
Unicode
Theorem
eu4
Description:
Uniqueness using implicit substitution.
(Contributed by
NM
, 26-Jul-1995)
Ref
Expression
Hypothesis
eu4.1
⊢
x
=
y
→
φ
↔
ψ
Assertion
eu4
⊢
∃!
x
φ
↔
∃
x
φ
∧
∀
x
∀
y
φ
∧
ψ
→
x
=
y
Proof
Step
Hyp
Ref
Expression
1
eu4.1
⊢
x
=
y
→
φ
↔
ψ
2
df-eu
⊢
∃!
x
φ
↔
∃
x
φ
∧
∃
*
x
φ
3
1
mo4
⊢
∃
*
x
φ
↔
∀
x
∀
y
φ
∧
ψ
→
x
=
y
4
3
anbi2i
⊢
∃
x
φ
∧
∃
*
x
φ
↔
∃
x
φ
∧
∀
x
∀
y
φ
∧
ψ
→
x
=
y
5
2
4
bitri
⊢
∃!
x
φ
↔
∃
x
φ
∧
∀
x
∀
y
φ
∧
ψ
→
x
=
y