Metamath Proof Explorer


Theorem eu6im

Description: One direction of eu6 needs fewer axioms. (Contributed by Wolf Lammen, 2-Mar-2023)

Ref Expression
Assertion eu6im y x φ x = y ∃! x φ

Proof

Step Hyp Ref Expression
1 exsbim y x x = y φ x φ
2 1 anim1i y x x = y φ z x φ x = z x φ z x φ x = z
3 eu6lem y x φ x = y y x x = y φ z x φ x = z
4 eu3v ∃! x φ x φ z x φ x = z
5 2 3 4 3imtr4i y x φ x = y ∃! x φ