Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Uniqueness and unique existence
Unique existence: the unique existential quantifier
eu6im
Next ⟩
euf
Metamath Proof Explorer
Ascii
Unicode
Theorem
eu6im
Description:
One direction of
eu6
needs fewer axioms.
(Contributed by
Wolf Lammen
, 2-Mar-2023)
Ref
Expression
Assertion
eu6im
⊢
∃
y
∀
x
φ
↔
x
=
y
→
∃!
x
φ
Proof
Step
Hyp
Ref
Expression
1
exsbim
⊢
∃
y
∀
x
x
=
y
→
φ
→
∃
x
φ
2
1
anim1i
⊢
∃
y
∀
x
x
=
y
→
φ
∧
∃
z
∀
x
φ
→
x
=
z
→
∃
x
φ
∧
∃
z
∀
x
φ
→
x
=
z
3
eu6lem
⊢
∃
y
∀
x
φ
↔
x
=
y
↔
∃
y
∀
x
x
=
y
→
φ
∧
∃
z
∀
x
φ
→
x
=
z
4
eu3v
⊢
∃!
x
φ
↔
∃
x
φ
∧
∃
z
∀
x
φ
→
x
=
z
5
2
3
4
3imtr4i
⊢
∃
y
∀
x
φ
↔
x
=
y
→
∃!
x
φ