Metamath Proof Explorer


Theorem euabex

Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994)

Ref Expression
Assertion euabex ∃! x φ x | φ V

Proof

Step Hyp Ref Expression
1 eumo ∃! x φ * x φ
2 moabex * x φ x | φ V
3 1 2 syl ∃! x φ x | φ V