Metamath Proof Explorer


Theorem euabsn

Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004)

Ref Expression
Assertion euabsn ∃! x φ x x | φ = x

Proof

Step Hyp Ref Expression
1 euabsn2 ∃! x φ y x | φ = y
2 nfv y x | φ = x
3 nfab1 _ x x | φ
4 3 nfeq1 x x | φ = y
5 sneq x = y x = y
6 5 eqeq2d x = y x | φ = x x | φ = y
7 2 4 6 cbvexv1 x x | φ = x y x | φ = y
8 1 7 bitr4i ∃! x φ x x | φ = x