Metamath Proof Explorer


Theorem euabsn2

Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion euabsn2 ∃! x φ y x | φ = y

Proof

Step Hyp Ref Expression
1 eu6 ∃! x φ y x φ x = y
2 absn x | φ = y x φ x = y
3 2 exbii y x | φ = y y x φ x = y
4 1 3 bitr4i ∃! x φ y x | φ = y