Metamath Proof Explorer


Theorem euae

Description: Two ways to express "exactly one thing exists". To paraphrase the statement and explain the label: there Exists a Unique thing if and only if for All x , x Equals some given (and disjoint) y . Both sides are false in set theory, see Theorems neutru and dtru . (Contributed by NM, 5-Apr-2004) State the theorem using truth constant T. . (Revised by BJ, 7-Oct-2022) Reduce axiom dependencies. (Revised by Wolf Lammen, 2-Mar-2023)

Ref Expression
Assertion euae ∃! x x x = y

Proof

Step Hyp Ref Expression
1 extru x
2 1 biantrur y x x = y x y x x = y
3 hbaev x x = y y x x = y
4 3 19.8w x x = y y x x = y
5 hbnaev ¬ x x = y y ¬ x x = y
6 alnex y ¬ x x = y ¬ y x x = y
7 5 6 sylib ¬ x x = y ¬ y x x = y
8 7 con4i y x x = y x x = y
9 4 8 impbii x x = y y x x = y
10 trut x = y x = y
11 10 albii x x = y x x = y
12 11 exbii y x x = y y x x = y
13 9 12 bitri x x = y y x x = y
14 eu3v ∃! x x y x x = y
15 2 13 14 3bitr4ri ∃! x x x = y