Metamath Proof Explorer


Theorem euan

Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 19-Feb-2005) (Proof shortened by Andrew Salmon, 9-Jul-2011) (Proof shortened by Wolf Lammen, 24-Dec-2018)

Ref Expression
Hypothesis moanim.1 x φ
Assertion euan ∃! x φ ψ φ ∃! x ψ

Proof

Step Hyp Ref Expression
1 moanim.1 x φ
2 euex ∃! x φ ψ x φ ψ
3 simpl φ ψ φ
4 1 3 exlimi x φ ψ φ
5 2 4 syl ∃! x φ ψ φ
6 ibar φ ψ φ ψ
7 1 6 eubid φ ∃! x ψ ∃! x φ ψ
8 7 biimprcd ∃! x φ ψ φ ∃! x ψ
9 5 8 jcai ∃! x φ ψ φ ∃! x ψ
10 7 biimpa φ ∃! x ψ ∃! x φ ψ
11 9 10 impbii ∃! x φ ψ φ ∃! x ψ