Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 19-Feb-2005) (Proof shortened by Andrew Salmon, 9-Jul-2011) (Proof shortened by Wolf Lammen, 24-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | moanim.1 | ||
| Assertion | euan | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | moanim.1 | ||
| 2 | euex | ||
| 3 | simpl | ||
| 4 | 1 3 | exlimi | |
| 5 | 2 4 | syl | |
| 6 | ibar | ||
| 7 | 1 6 | eubid | |
| 8 | 7 | biimprcd | |
| 9 | 5 8 | jcai | |
| 10 | 7 | biimpa | |
| 11 | 9 10 | impbii |