Metamath Proof Explorer


Theorem euanv

Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 23-Mar-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2023)

Ref Expression
Assertion euanv ∃! x φ ψ φ ∃! x ψ

Proof

Step Hyp Ref Expression
1 euex ∃! x φ ψ x φ ψ
2 simpl φ ψ φ
3 2 exlimiv x φ ψ φ
4 1 3 syl ∃! x φ ψ φ
5 ibar φ ψ φ ψ
6 5 eubidv φ ∃! x ψ ∃! x φ ψ
7 6 biimprcd ∃! x φ ψ φ ∃! x ψ
8 4 7 jcai ∃! x φ ψ φ ∃! x ψ
9 6 biimpa φ ∃! x ψ ∃! x φ ψ
10 8 9 impbii ∃! x φ ψ φ ∃! x ψ