Metamath Proof Explorer


Theorem eubi

Description: Equivalence theorem for the unique existential quantifier. Theorem *14.271 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011) Reduce dependencies on axioms. (Revised by BJ, 7-Oct-2022)

Ref Expression
Assertion eubi x φ ψ ∃! x φ ∃! x ψ

Proof

Step Hyp Ref Expression
1 exbi x φ ψ x φ x ψ
2 mobi x φ ψ * x φ * x ψ
3 1 2 anbi12d x φ ψ x φ * x φ x ψ * x ψ
4 df-eu ∃! x φ x φ * x φ
5 df-eu ∃! x ψ x ψ * x ψ
6 3 4 5 3bitr4g x φ ψ ∃! x φ ∃! x ψ