Metamath Proof Explorer


Theorem eubid

Description: Formula-building rule for the unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994) (Proof shortened by Wolf Lammen, 19-Feb-2023)

Ref Expression
Hypotheses eubid.1 x φ
eubid.2 φ ψ χ
Assertion eubid φ ∃! x ψ ∃! x χ

Proof

Step Hyp Ref Expression
1 eubid.1 x φ
2 eubid.2 φ ψ χ
3 1 2 alrimi φ x ψ χ
4 eubi x ψ χ ∃! x ψ ∃! x χ
5 3 4 syl φ ∃! x ψ ∃! x χ