Metamath Proof Explorer


Theorem eubidv

Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022)

Ref Expression
Hypothesis eubidv.1 φ ψ χ
Assertion eubidv φ ∃! x ψ ∃! x χ

Proof

Step Hyp Ref Expression
1 eubidv.1 φ ψ χ
2 1 alrimiv φ x ψ χ
3 eubi x ψ χ ∃! x ψ ∃! x χ
4 2 3 syl φ ∃! x ψ ∃! x χ