Metamath Proof Explorer


Theorem eucalgval2

Description: The value of the step function E for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 28-May-2014)

Ref Expression
Hypothesis eucalgval.1 E = x 0 , y 0 if y = 0 x y y x mod y
Assertion eucalgval2 M 0 N 0 M E N = if N = 0 M N N M mod N

Proof

Step Hyp Ref Expression
1 eucalgval.1 E = x 0 , y 0 if y = 0 x y y x mod y
2 simpr x = M y = N y = N
3 2 eqeq1d x = M y = N y = 0 N = 0
4 opeq12 x = M y = N x y = M N
5 oveq12 x = M y = N x mod y = M mod N
6 2 5 opeq12d x = M y = N y x mod y = N M mod N
7 3 4 6 ifbieq12d x = M y = N if y = 0 x y y x mod y = if N = 0 M N N M mod N
8 opex M N V
9 opex N M mod N V
10 8 9 ifex if N = 0 M N N M mod N V
11 7 1 10 ovmpoa M 0 N 0 M E N = if N = 0 M N N M mod N