Metamath Proof Explorer


Theorem euclemma

Description: Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. Theorem 1.9 in ApostolNT p. 17. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Assertion euclemma P M N P M N P M P N

Proof

Step Hyp Ref Expression
1 coprm P M ¬ P M P gcd M = 1
2 1 3adant3 P M N ¬ P M P gcd M = 1
3 2 anbi2d P M N P M N ¬ P M P M N P gcd M = 1
4 prmz P P
5 coprmdvds P M N P M N P gcd M = 1 P N
6 4 5 syl3an1 P M N P M N P gcd M = 1 P N
7 3 6 sylbid P M N P M N ¬ P M P N
8 7 expd P M N P M N ¬ P M P N
9 df-or P M P N ¬ P M P N
10 8 9 syl6ibr P M N P M N P M P N
11 ordvdsmul P M N P M P N P M N
12 4 11 syl3an1 P M N P M P N P M N
13 10 12 impbid P M N P M N P M P N