Metamath Proof Explorer


Theorem eucrct2eupth1

Description: Removing one edge ( I( FN ) ) from a nonempty graph G with an Eulerian circuit <. F , P >. results in a graph S with an Eulerian path <. H , Q >. . This is the special case of eucrct2eupth (with J = ( N - 1 ) ) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)

Ref Expression
Hypotheses eucrct2eupth1.v V=VtxG
eucrct2eupth1.i I=iEdgG
eucrct2eupth1.d φFEulerPathsGP
eucrct2eupth1.c φFCircuitsGP
eucrct2eupth1.s VtxS=V
eucrct2eupth1.g φ0<F
eucrct2eupth1.n φN=F1
eucrct2eupth1.e φiEdgS=IF0..^N
eucrct2eupth1.h H=FprefixN
eucrct2eupth1.q Q=P0N
Assertion eucrct2eupth1 φHEulerPathsSQ

Proof

Step Hyp Ref Expression
1 eucrct2eupth1.v V=VtxG
2 eucrct2eupth1.i I=iEdgG
3 eucrct2eupth1.d φFEulerPathsGP
4 eucrct2eupth1.c φFCircuitsGP
5 eucrct2eupth1.s VtxS=V
6 eucrct2eupth1.g φ0<F
7 eucrct2eupth1.n φN=F1
8 eucrct2eupth1.e φiEdgS=IF0..^N
9 eucrct2eupth1.h H=FprefixN
10 eucrct2eupth1.q Q=P0N
11 eupthiswlk FEulerPathsGPFWalksGP
12 wlkcl FWalksGPF0
13 nn0z F0F
14 13 anim1i F00<FF0<F
15 elnnz FF0<F
16 14 15 sylibr F00<FF
17 16 ex F00<FF
18 3 11 12 17 4syl φ0<FF
19 6 18 mpd φF
20 fzo0end FF10..^F
21 19 20 syl φF10..^F
22 7 21 eqeltrd φN0..^F
23 1 2 3 22 8 9 10 5 eupthres φHEulerPathsSQ