Metamath Proof Explorer


Theorem euelss

Description: Transfer uniqueness of an element to a smaller subclass. (Contributed by AV, 14-Apr-2020)

Ref Expression
Assertion euelss A B x x A ∃! x x B ∃! x x A

Proof

Step Hyp Ref Expression
1 id A B A B
2 df-rex x A x x A
3 ancom x A x A
4 truan x A x A
5 3 4 bitri x A x A
6 5 exbii x x A x x A
7 2 6 sylbbr x x A x A
8 df-reu ∃! x B ∃! x x B
9 ancom x B x B
10 truan x B x B
11 9 10 bitri x B x B
12 11 eubii ∃! x x B ∃! x x B
13 8 12 sylbbr ∃! x x B ∃! x B
14 reuss A B x A ∃! x B ∃! x A
15 1 7 13 14 syl3an A B x x A ∃! x x B ∃! x A
16 df-reu ∃! x A ∃! x x A
17 15 16 sylib A B x x A ∃! x x B ∃! x x A
18 ancom x A x A
19 4 18 bitr3i x A x A
20 19 eubii ∃! x x A ∃! x x A
21 17 20 sylibr A B x x A ∃! x x B ∃! x x A