Metamath Proof Explorer


Theorem euen1

Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion euen1 ∃! x φ x | φ 1 𝑜

Proof

Step Hyp Ref Expression
1 reuen1 ∃! x V φ x V | φ 1 𝑜
2 reuv ∃! x V φ ∃! x φ
3 rabab x V | φ = x | φ
4 3 breq1i x V | φ 1 𝑜 x | φ 1 𝑜
5 1 2 4 3bitr3i ∃! x φ x | φ 1 𝑜