Metamath Proof Explorer


Theorem eueq3

Description: Equality has existential uniqueness (split into 3 cases). (Contributed by NM, 5-Apr-1995) (Proof shortened by Mario Carneiro, 28-Sep-2015)

Ref Expression
Hypotheses eueq3.1 A V
eueq3.2 B V
eueq3.3 C V
eueq3.4 ¬ φ ψ
Assertion eueq3 ∃! x φ x = A ¬ φ ψ x = B ψ x = C

Proof

Step Hyp Ref Expression
1 eueq3.1 A V
2 eueq3.2 B V
3 eueq3.3 C V
4 eueq3.4 ¬ φ ψ
5 1 eueqi ∃! x x = A
6 ibar φ x = A φ x = A
7 pm2.45 ¬ φ ψ ¬ φ
8 4 imnani φ ¬ ψ
9 8 con2i ψ ¬ φ
10 7 9 jaoi ¬ φ ψ ψ ¬ φ
11 10 con2i φ ¬ ¬ φ ψ ψ
12 7 con2i φ ¬ ¬ φ ψ
13 12 bianfd φ ¬ φ ψ ¬ φ ψ x = B
14 8 bianfd φ ψ ψ x = C
15 13 14 orbi12d φ ¬ φ ψ ψ ¬ φ ψ x = B ψ x = C
16 11 15 mtbid φ ¬ ¬ φ ψ x = B ψ x = C
17 biorf ¬ ¬ φ ψ x = B ψ x = C φ x = A ¬ φ ψ x = B ψ x = C φ x = A
18 16 17 syl φ φ x = A ¬ φ ψ x = B ψ x = C φ x = A
19 6 18 bitrd φ x = A ¬ φ ψ x = B ψ x = C φ x = A
20 3orrot φ x = A ¬ φ ψ x = B ψ x = C ¬ φ ψ x = B ψ x = C φ x = A
21 df-3or ¬ φ ψ x = B ψ x = C φ x = A ¬ φ ψ x = B ψ x = C φ x = A
22 20 21 bitri φ x = A ¬ φ ψ x = B ψ x = C ¬ φ ψ x = B ψ x = C φ x = A
23 19 22 bitr4di φ x = A φ x = A ¬ φ ψ x = B ψ x = C
24 23 eubidv φ ∃! x x = A ∃! x φ x = A ¬ φ ψ x = B ψ x = C
25 5 24 mpbii φ ∃! x φ x = A ¬ φ ψ x = B ψ x = C
26 3 eueqi ∃! x x = C
27 ibar ψ x = C ψ x = C
28 8 adantr φ x = A ¬ ψ
29 pm2.46 ¬ φ ψ ¬ ψ
30 29 adantr ¬ φ ψ x = B ¬ ψ
31 28 30 jaoi φ x = A ¬ φ ψ x = B ¬ ψ
32 31 con2i ψ ¬ φ x = A ¬ φ ψ x = B
33 biorf ¬ φ x = A ¬ φ ψ x = B ψ x = C φ x = A ¬ φ ψ x = B ψ x = C
34 32 33 syl ψ ψ x = C φ x = A ¬ φ ψ x = B ψ x = C
35 27 34 bitrd ψ x = C φ x = A ¬ φ ψ x = B ψ x = C
36 df-3or φ x = A ¬ φ ψ x = B ψ x = C φ x = A ¬ φ ψ x = B ψ x = C
37 35 36 bitr4di ψ x = C φ x = A ¬ φ ψ x = B ψ x = C
38 37 eubidv ψ ∃! x x = C ∃! x φ x = A ¬ φ ψ x = B ψ x = C
39 26 38 mpbii ψ ∃! x φ x = A ¬ φ ψ x = B ψ x = C
40 2 eueqi ∃! x x = B
41 ibar ¬ φ ψ x = B ¬ φ ψ x = B
42 simpl φ x = A φ
43 simpl ψ x = C ψ
44 42 43 orim12i φ x = A ψ x = C φ ψ
45 biorf ¬ φ x = A ψ x = C ¬ φ ψ x = B φ x = A ψ x = C ¬ φ ψ x = B
46 44 45 nsyl5 ¬ φ ψ ¬ φ ψ x = B φ x = A ψ x = C ¬ φ ψ x = B
47 41 46 bitrd ¬ φ ψ x = B φ x = A ψ x = C ¬ φ ψ x = B
48 3orcomb φ x = A ¬ φ ψ x = B ψ x = C φ x = A ψ x = C ¬ φ ψ x = B
49 df-3or φ x = A ψ x = C ¬ φ ψ x = B φ x = A ψ x = C ¬ φ ψ x = B
50 48 49 bitri φ x = A ¬ φ ψ x = B ψ x = C φ x = A ψ x = C ¬ φ ψ x = B
51 47 50 bitr4di ¬ φ ψ x = B φ x = A ¬ φ ψ x = B ψ x = C
52 51 eubidv ¬ φ ψ ∃! x x = B ∃! x φ x = A ¬ φ ψ x = B ψ x = C
53 40 52 mpbii ¬ φ ψ ∃! x φ x = A ¬ φ ψ x = B ψ x = C
54 25 39 53 ecase3 ∃! x φ x = A ¬ φ ψ x = B ψ x = C