Metamath Proof Explorer


Theorem euf

Description: Version of eu6 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by NM, 12-Aug-1993) (Proof shortened by Wolf Lammen, 30-Oct-2018) Avoid ax-13 . (Revised by Wolf Lammen, 16-Oct-2022)

Ref Expression
Hypothesis euf.1 y φ
Assertion euf ∃! x φ y x φ x = y

Proof

Step Hyp Ref Expression
1 euf.1 y φ
2 eu6 ∃! x φ z x φ x = z
3 nfv y x = z
4 1 3 nfbi y φ x = z
5 4 nfal y x φ x = z
6 nfv z x φ x = y
7 equequ2 z = y x = z x = y
8 7 bibi2d z = y φ x = z φ x = y
9 8 albidv z = y x φ x = z x φ x = y
10 5 6 9 cbvexv1 z x φ x = z y x φ x = y
11 2 10 bitri ∃! x φ y x φ x = y