Metamath Proof Explorer


Theorem eufsn2

Description: There is exactly one function into a singleton, assuming ax-pow and ax-un . Variant of eufsn . If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypotheses eufsn.1 φ B W
eufsn.2 φ A V
Assertion eufsn2 φ ∃! f f : A B

Proof

Step Hyp Ref Expression
1 eufsn.1 φ B W
2 eufsn.2 φ A V
3 snex B V
4 xpexg A V B V A × B V
5 2 3 4 sylancl φ A × B V
6 1 5 eufsnlem φ ∃! f f : A B