Metamath Proof Explorer


Theorem eufsnlem

Description: There is exactly one function into a singleton. For a simpler hypothesis, see eufsn assuming ax-rep , or eufsn2 assuming ax-pow and ax-un . (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypotheses eufsn.1 φ B W
eufsnlem.2 φ A × B V
Assertion eufsnlem φ ∃! f f : A B

Proof

Step Hyp Ref Expression
1 eufsn.1 φ B W
2 eufsnlem.2 φ A × B V
3 fconst2g B W f : A B f = A × B
4 1 3 syl φ f : A B f = A × B
5 4 alrimiv φ f f : A B f = A × B
6 eqeq2 g = A × B f = g f = A × B
7 6 bibi2d g = A × B f : A B f = g f : A B f = A × B
8 7 albidv g = A × B f f : A B f = g f f : A B f = A × B
9 2 5 8 spcedv φ g f f : A B f = g
10 eu6im g f f : A B f = g ∃! f f : A B
11 9 10 syl φ ∃! f f : A B