Metamath Proof Explorer


Theorem euim

Description: Add unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005) (Proof shortened by Andrew Salmon, 14-Jun-2011) (Proof shortened by Wolf Lammen, 1-Oct-2023)

Ref Expression
Assertion euim x φ x φ ψ ∃! x ψ ∃! x φ

Proof

Step Hyp Ref Expression
1 euimmo x φ ψ ∃! x ψ * x φ
2 exmoeub x φ * x φ ∃! x φ
3 2 biimpd x φ * x φ ∃! x φ
4 1 3 sylan9r x φ x φ ψ ∃! x ψ ∃! x φ