Metamath Proof Explorer


Theorem eujustALT

Description: Alternate proof of eujust illustrating the use of dvelim . (Contributed by NM, 11-Mar-2010) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eujustALT y x φ x = y z x φ x = z

Proof

Step Hyp Ref Expression
1 equequ2 y = z x = y x = z
2 1 bibi2d y = z φ x = y φ x = z
3 2 albidv y = z x φ x = y x φ x = z
4 3 sps y y = z x φ x = y x φ x = z
5 4 drex1 y y = z y x φ x = y z x φ x = z
6 hbnae ¬ y y = z y ¬ y y = z
7 hbnae ¬ y y = z z ¬ y y = z
8 6 7 alrimih ¬ y y = z y z ¬ y y = z
9 ax-5 ¬ x φ x = w z ¬ x φ x = w
10 equequ2 w = y x = w x = y
11 10 bibi2d w = y φ x = w φ x = y
12 11 albidv w = y x φ x = w x φ x = y
13 12 notbid w = y ¬ x φ x = w ¬ x φ x = y
14 9 13 dvelim ¬ z z = y ¬ x φ x = y z ¬ x φ x = y
15 14 naecoms ¬ y y = z ¬ x φ x = y z ¬ x φ x = y
16 ax-5 ¬ x φ x = w y ¬ x φ x = w
17 equequ2 w = z x = w x = z
18 17 bibi2d w = z φ x = w φ x = z
19 18 albidv w = z x φ x = w x φ x = z
20 19 notbid w = z ¬ x φ x = w ¬ x φ x = z
21 16 20 dvelim ¬ y y = z ¬ x φ x = z y ¬ x φ x = z
22 3 notbid y = z ¬ x φ x = y ¬ x φ x = z
23 22 a1i ¬ y y = z y = z ¬ x φ x = y ¬ x φ x = z
24 15 21 23 cbv2h y z ¬ y y = z y ¬ x φ x = y z ¬ x φ x = z
25 8 24 syl ¬ y y = z y ¬ x φ x = y z ¬ x φ x = z
26 25 notbid ¬ y y = z ¬ y ¬ x φ x = y ¬ z ¬ x φ x = z
27 df-ex y x φ x = y ¬ y ¬ x φ x = y
28 df-ex z x φ x = z ¬ z ¬ x φ x = z
29 26 27 28 3bitr4g ¬ y y = z y x φ x = y z x φ x = z
30 5 29 pm2.61i y x φ x = y z x φ x = z