Metamath Proof Explorer


Theorem eulerid

Description: Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion eulerid e i π + 1 = 0

Proof

Step Hyp Ref Expression
1 efipi e i π = 1
2 1 oveq1i e i π + 1 = - 1 + 1
3 ax-1cn 1
4 neg1cn 1
5 1pneg1e0 1 + -1 = 0
6 3 4 5 addcomli - 1 + 1 = 0
7 2 6 eqtri e i π + 1 = 0