Metamath Proof Explorer
Description: Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 9-May-2014)
|
|
Ref |
Expression |
|
Assertion |
eulerid |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
efipi |
|
2 |
1
|
oveq1i |
|
3 |
|
ax-1cn |
|
4 |
|
neg1cn |
|
5 |
|
1pneg1e0 |
|
6 |
3 4 5
|
addcomli |
|
7 |
2 6
|
eqtri |
|