| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eulerpart.p |
|
| 2 |
|
eulerpart.o |
|
| 3 |
|
eulerpart.d |
|
| 4 |
|
eqid |
|
| 5 |
|
oveq2 |
|
| 6 |
|
oveq2 |
|
| 7 |
6
|
oveq1d |
|
| 8 |
5 7
|
cbvmpov |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
eleq1d |
|
| 11 |
10
|
cbvrabv |
|
| 12 |
11
|
eqcomi |
|
| 13 |
|
fveq1 |
|
| 14 |
13
|
eleq2d |
|
| 15 |
14
|
anbi2d |
|
| 16 |
15
|
opabbidv |
|
| 17 |
16
|
cbvmptv |
|
| 18 |
|
oveq1 |
|
| 19 |
18
|
eleq1d |
|
| 20 |
19
|
cbvrabv |
|
| 21 |
20
|
eqcomi |
|
| 22 |
|
simpl |
|
| 23 |
22
|
eleq1d |
|
| 24 |
|
simpr |
|
| 25 |
22
|
fveq2d |
|
| 26 |
24 25
|
eleq12d |
|
| 27 |
23 26
|
anbi12d |
|
| 28 |
27
|
cbvopabv |
|
| 29 |
21 28
|
mpteq12i |
|
| 30 |
17 29
|
eqtri |
|
| 31 |
|
cnveq |
|
| 32 |
31
|
imaeq1d |
|
| 33 |
32
|
eleq1d |
|
| 34 |
33
|
cbvabv |
|
| 35 |
32
|
sseq1d |
|
| 36 |
35
|
cbvrabv |
|
| 37 |
|
reseq1 |
|
| 38 |
37
|
coeq2d |
|
| 39 |
38
|
fveq2d |
|
| 40 |
39
|
imaeq2d |
|
| 41 |
40
|
fveq2d |
|
| 42 |
41
|
cbvmptv |
|
| 43 |
8
|
eqcomi |
|
| 44 |
43
|
imaeq1i |
|
| 45 |
|
eqid |
|
| 46 |
11 45
|
mpteq12i |
|
| 47 |
|
fveq1 |
|
| 48 |
47
|
eleq2d |
|
| 49 |
48
|
anbi2d |
|
| 50 |
49
|
opabbidv |
|
| 51 |
50
|
cbvmptv |
|
| 52 |
46 29 51
|
3eqtr2i |
|
| 53 |
52
|
fveq1i |
|
| 54 |
53
|
imaeq2i |
|
| 55 |
44 54
|
eqtri |
|
| 56 |
55
|
fveq2i |
|
| 57 |
56
|
mpteq2i |
|
| 58 |
42 57
|
eqtri |
|
| 59 |
|
eqid |
|
| 60 |
1 2 3 4 8 12 30 34 36 58 59
|
eulerpartlemn |
|
| 61 |
|
ovex |
|
| 62 |
61
|
rabex |
|
| 63 |
62
|
inex1 |
|
| 64 |
63
|
mptex |
|
| 65 |
64
|
resex |
|
| 66 |
|
f1oeq1 |
|
| 67 |
65 66
|
spcev |
|
| 68 |
|
bren |
|
| 69 |
|
hasheni |
|
| 70 |
68 69
|
sylbir |
|
| 71 |
60 67 70
|
mp2b |
|