Metamath Proof Explorer


Theorem eulerpartlem1

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 27-Aug-2017) (Revised by Thierry Arnoux, 1-Sep-2019)

Ref Expression
Hypotheses eulerpart.p P = f 0 | f -1 Fin k f k k = N
eulerpart.o O = g P | n g -1 ¬ 2 n
eulerpart.d D = g P | n g n 1
eulerpart.j J = z | ¬ 2 z
eulerpart.f F = x J , y 0 2 y x
eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
eulerpart.m M = r H x y | x J y r x
Assertion eulerpartlem1 M : H 1-1 onto 𝒫 J × 0 Fin

Proof

Step Hyp Ref Expression
1 eulerpart.p P = f 0 | f -1 Fin k f k k = N
2 eulerpart.o O = g P | n g -1 ¬ 2 n
3 eulerpart.d D = g P | n g n 1
4 eulerpart.j J = z | ¬ 2 z
5 eulerpart.f F = x J , y 0 2 y x
6 eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
7 eulerpart.m M = r H x y | x J y r x
8 nnex V
9 4 8 rabex2 J V
10 nn0ex 0 V
11 eqid r 𝒫 0 J x y | x J y r x = r 𝒫 0 J x y | x J y r x
12 9 10 11 6 fpwrelmapffs r 𝒫 0 J x y | x J y r x H : H 1-1 onto 𝒫 J × 0 Fin
13 ssrab2 r 𝒫 0 Fin J | r supp Fin 𝒫 0 Fin J
14 10 pwex 𝒫 0 V
15 inss1 𝒫 0 Fin 𝒫 0
16 mapss 𝒫 0 V 𝒫 0 Fin 𝒫 0 𝒫 0 Fin J 𝒫 0 J
17 14 15 16 mp2an 𝒫 0 Fin J 𝒫 0 J
18 13 17 sstri r 𝒫 0 Fin J | r supp Fin 𝒫 0 J
19 6 18 eqsstri H 𝒫 0 J
20 resmpt H 𝒫 0 J r 𝒫 0 J x y | x J y r x H = r H x y | x J y r x
21 19 20 ax-mp r 𝒫 0 J x y | x J y r x H = r H x y | x J y r x
22 7 21 eqtr4i M = r 𝒫 0 J x y | x J y r x H
23 f1oeq1 M = r 𝒫 0 J x y | x J y r x H M : H 1-1 onto 𝒫 J × 0 Fin r 𝒫 0 J x y | x J y r x H : H 1-1 onto 𝒫 J × 0 Fin
24 22 23 ax-mp M : H 1-1 onto 𝒫 J × 0 Fin r 𝒫 0 J x y | x J y r x H : H 1-1 onto 𝒫 J × 0 Fin
25 12 24 mpbir M : H 1-1 onto 𝒫 J × 0 Fin