Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Euler's partition theorem
eulerpartleme
Next ⟩
eulerpartlemv
Metamath Proof Explorer
Ascii
Unicode
Theorem
eulerpartleme
Description:
Lemma for
eulerpart
.
(Contributed by
Mario Carneiro
, 26-Jan-2015)
Ref
Expression
Hypothesis
eulerpart.p
⊢
P
=
f
∈
ℕ
0
ℕ
|
f
-1
ℕ
∈
Fin
∧
∑
k
∈
ℕ
f
⁡
k
⁢
k
=
N
Assertion
eulerpartleme
⊢
A
∈
P
↔
A
:
ℕ
⟶
ℕ
0
∧
A
-1
ℕ
∈
Fin
∧
∑
k
∈
ℕ
A
⁡
k
⁢
k
=
N
Proof
Step
Hyp
Ref
Expression
1
eulerpart.p
⊢
P
=
f
∈
ℕ
0
ℕ
|
f
-1
ℕ
∈
Fin
∧
∑
k
∈
ℕ
f
⁡
k
⁢
k
=
N
2
nn0ex
⊢
ℕ
0
∈
V
3
nnex
⊢
ℕ
∈
V
4
2
3
elmap
⊢
A
∈
ℕ
0
ℕ
↔
A
:
ℕ
⟶
ℕ
0
5
4
anbi1i
⊢
A
∈
ℕ
0
ℕ
∧
A
-1
ℕ
∈
Fin
∧
∑
k
∈
ℕ
A
⁡
k
⁢
k
=
N
↔
A
:
ℕ
⟶
ℕ
0
∧
A
-1
ℕ
∈
Fin
∧
∑
k
∈
ℕ
A
⁡
k
⁢
k
=
N
6
cnveq
⊢
f
=
A
→
f
-1
=
A
-1
7
6
imaeq1d
⊢
f
=
A
→
f
-1
ℕ
=
A
-1
ℕ
8
7
eleq1d
⊢
f
=
A
→
f
-1
ℕ
∈
Fin
↔
A
-1
ℕ
∈
Fin
9
fveq1
⊢
f
=
A
→
f
⁡
k
=
A
⁡
k
10
9
oveq1d
⊢
f
=
A
→
f
⁡
k
⁢
k
=
A
⁡
k
⁢
k
11
10
sumeq2sdv
⊢
f
=
A
→
∑
k
∈
ℕ
f
⁡
k
⁢
k
=
∑
k
∈
ℕ
A
⁡
k
⁢
k
12
11
eqeq1d
⊢
f
=
A
→
∑
k
∈
ℕ
f
⁡
k
⁢
k
=
N
↔
∑
k
∈
ℕ
A
⁡
k
⁢
k
=
N
13
8
12
anbi12d
⊢
f
=
A
→
f
-1
ℕ
∈
Fin
∧
∑
k
∈
ℕ
f
⁡
k
⁢
k
=
N
↔
A
-1
ℕ
∈
Fin
∧
∑
k
∈
ℕ
A
⁡
k
⁢
k
=
N
14
13
1
elrab2
⊢
A
∈
P
↔
A
∈
ℕ
0
ℕ
∧
A
-1
ℕ
∈
Fin
∧
∑
k
∈
ℕ
A
⁡
k
⁢
k
=
N
15
3anass
⊢
A
:
ℕ
⟶
ℕ
0
∧
A
-1
ℕ
∈
Fin
∧
∑
k
∈
ℕ
A
⁡
k
⁢
k
=
N
↔
A
:
ℕ
⟶
ℕ
0
∧
A
-1
ℕ
∈
Fin
∧
∑
k
∈
ℕ
A
⁡
k
⁢
k
=
N
16
5
14
15
3bitr4i
⊢
A
∈
P
↔
A
:
ℕ
⟶
ℕ
0
∧
A
-1
ℕ
∈
Fin
∧
∑
k
∈
ℕ
A
⁡
k
⁢
k
=
N