Metamath Proof Explorer


Theorem eulerpartlemelr

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 8-Aug-2018)

Ref Expression
Hypotheses eulerpartlems.r R = f | f -1 Fin
eulerpartlems.s S = f 0 R k f k k
Assertion eulerpartlemelr A 0 R A : 0 A -1 Fin

Proof

Step Hyp Ref Expression
1 eulerpartlems.r R = f | f -1 Fin
2 eulerpartlems.s S = f 0 R k f k k
3 inss1 0 R 0
4 3 sseli A 0 R A 0
5 elmapi A 0 A : 0
6 4 5 syl A 0 R A : 0
7 inss2 0 R R
8 7 sseli A 0 R A R
9 cnveq f = A f -1 = A -1
10 9 imaeq1d f = A f -1 = A -1
11 10 eleq1d f = A f -1 Fin A -1 Fin
12 11 1 elab2g A 0 R A R A -1 Fin
13 8 12 mpbid A 0 R A -1 Fin
14 6 13 jca A 0 R A : 0 A -1 Fin