Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Euler's partition theorem
eulerpartlemelr
Next ⟩
eulerpartlemsv2
Metamath Proof Explorer
Ascii
Unicode
Theorem
eulerpartlemelr
Description:
Lemma for
eulerpart
.
(Contributed by
Thierry Arnoux
, 8-Aug-2018)
Ref
Expression
Hypotheses
eulerpartlems.r
⊢
R
=
f
|
f
-1
ℕ
∈
Fin
eulerpartlems.s
⊢
S
=
f
∈
ℕ
0
ℕ
∩
R
⟼
∑
k
∈
ℕ
f
⁡
k
⁢
k
Assertion
eulerpartlemelr
⊢
A
∈
ℕ
0
ℕ
∩
R
→
A
:
ℕ
⟶
ℕ
0
∧
A
-1
ℕ
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
eulerpartlems.r
⊢
R
=
f
|
f
-1
ℕ
∈
Fin
2
eulerpartlems.s
⊢
S
=
f
∈
ℕ
0
ℕ
∩
R
⟼
∑
k
∈
ℕ
f
⁡
k
⁢
k
3
inss1
⊢
ℕ
0
ℕ
∩
R
⊆
ℕ
0
ℕ
4
3
sseli
⊢
A
∈
ℕ
0
ℕ
∩
R
→
A
∈
ℕ
0
ℕ
5
elmapi
⊢
A
∈
ℕ
0
ℕ
→
A
:
ℕ
⟶
ℕ
0
6
4
5
syl
⊢
A
∈
ℕ
0
ℕ
∩
R
→
A
:
ℕ
⟶
ℕ
0
7
inss2
⊢
ℕ
0
ℕ
∩
R
⊆
R
8
7
sseli
⊢
A
∈
ℕ
0
ℕ
∩
R
→
A
∈
R
9
cnveq
⊢
f
=
A
→
f
-1
=
A
-1
10
9
imaeq1d
⊢
f
=
A
→
f
-1
ℕ
=
A
-1
ℕ
11
10
eleq1d
⊢
f
=
A
→
f
-1
ℕ
∈
Fin
↔
A
-1
ℕ
∈
Fin
12
11
1
elab2g
⊢
A
∈
ℕ
0
ℕ
∩
R
→
A
∈
R
↔
A
-1
ℕ
∈
Fin
13
8
12
mpbid
⊢
A
∈
ℕ
0
ℕ
∩
R
→
A
-1
ℕ
∈
Fin
14
6
13
jca
⊢
A
∈
ℕ
0
ℕ
∩
R
→
A
:
ℕ
⟶
ℕ
0
∧
A
-1
ℕ
∈
Fin