Metamath Proof Explorer


Theorem eulerpartlemf

Description: Lemma for eulerpart : Odd partitions are zero for even numbers. (Contributed by Thierry Arnoux, 9-Sep-2017)

Ref Expression
Hypotheses eulerpart.p P = f 0 | f -1 Fin k f k k = N
eulerpart.o O = g P | n g -1 ¬ 2 n
eulerpart.d D = g P | n g n 1
eulerpart.j J = z | ¬ 2 z
eulerpart.f F = x J , y 0 2 y x
eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
eulerpart.m M = r H x y | x J y r x
eulerpart.r R = f | f -1 Fin
eulerpart.t T = f 0 | f -1 J
Assertion eulerpartlemf A T R t J A t = 0

Proof

Step Hyp Ref Expression
1 eulerpart.p P = f 0 | f -1 Fin k f k k = N
2 eulerpart.o O = g P | n g -1 ¬ 2 n
3 eulerpart.d D = g P | n g n 1
4 eulerpart.j J = z | ¬ 2 z
5 eulerpart.f F = x J , y 0 2 y x
6 eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
7 eulerpart.m M = r H x y | x J y r x
8 eulerpart.r R = f | f -1 Fin
9 eulerpart.t T = f 0 | f -1 J
10 eldif t J t ¬ t J
11 breq2 z = t 2 z 2 t
12 11 notbid z = t ¬ 2 z ¬ 2 t
13 12 4 elrab2 t J t ¬ 2 t
14 13 simplbi2 t ¬ 2 t t J
15 14 con1d t ¬ t J 2 t
16 15 imp t ¬ t J 2 t
17 10 16 sylbi t J 2 t
18 17 adantl A T R t J 2 t
19 18 adantr A T R t J A t 2 t
20 simpll A T R t J A t A T R
21 eldifi t J t
22 1 2 3 4 5 6 7 8 9 eulerpartlemt0 A T R A 0 A -1 Fin A -1 J
23 22 simp1bi A T R A 0
24 elmapi A 0 A : 0
25 23 24 syl A T R A : 0
26 ffn A : 0 A Fn
27 elpreima A Fn t A -1 t A t
28 25 26 27 3syl A T R t A -1 t A t
29 28 baibd A T R t t A -1 A t
30 21 29 sylan2 A T R t J t A -1 A t
31 30 biimpar A T R t J A t t A -1
32 22 simp3bi A T R A -1 J
33 32 sselda A T R t A -1 t J
34 13 simprbi t J ¬ 2 t
35 33 34 syl A T R t A -1 ¬ 2 t
36 20 31 35 syl2anc A T R t J A t ¬ 2 t
37 19 36 pm2.65da A T R t J ¬ A t
38 25 adantr A T R t J A : 0
39 21 adantl A T R t J t
40 38 39 ffvelrnd A T R t J A t 0
41 elnn0 A t 0 A t A t = 0
42 40 41 sylib A T R t J A t A t = 0
43 orel1 ¬ A t A t A t = 0 A t = 0
44 37 42 43 sylc A T R t J A t = 0