Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpartlems.r |
|
2 |
|
eulerpartlems.s |
|
3 |
|
2re |
|
4 |
3
|
a1i |
|
5 |
|
bitsss |
|
6 |
|
simprr |
|
7 |
5 6
|
sselid |
|
8 |
4 7
|
reexpcld |
|
9 |
|
simprl |
|
10 |
9
|
nnred |
|
11 |
8 10
|
remulcld |
|
12 |
1 2
|
eulerpartlemelr |
|
13 |
12
|
simpld |
|
14 |
13
|
ffvelrnda |
|
15 |
14
|
adantrr |
|
16 |
15
|
nn0red |
|
17 |
16 10
|
remulcld |
|
18 |
1 2
|
eulerpartlemsf |
|
19 |
18
|
ffvelrni |
|
20 |
19
|
adantr |
|
21 |
20
|
nn0red |
|
22 |
14
|
nn0red |
|
23 |
22
|
adantrr |
|
24 |
9
|
nnrpd |
|
25 |
24
|
rprege0d |
|
26 |
|
bitsfi |
|
27 |
15 26
|
syl |
|
28 |
3
|
a1i |
|
29 |
5
|
a1i |
|
30 |
29
|
sselda |
|
31 |
28 30
|
reexpcld |
|
32 |
|
0le2 |
|
33 |
32
|
a1i |
|
34 |
28 30 33
|
expge0d |
|
35 |
6
|
snssd |
|
36 |
27 31 34 35
|
fsumless |
|
37 |
8
|
recnd |
|
38 |
|
oveq2 |
|
39 |
38
|
sumsn |
|
40 |
6 37 39
|
syl2anc |
|
41 |
|
bitsinv1 |
|
42 |
15 41
|
syl |
|
43 |
36 40 42
|
3brtr3d |
|
44 |
|
lemul1a |
|
45 |
8 23 25 43 44
|
syl31anc |
|
46 |
|
fzfid |
|
47 |
|
elfznn |
|
48 |
|
ffvelrn |
|
49 |
13 47 48
|
syl2an |
|
50 |
49
|
nn0red |
|
51 |
47
|
adantl |
|
52 |
51
|
nnred |
|
53 |
50 52
|
remulcld |
|
54 |
53
|
adantlr |
|
55 |
49
|
nn0ge0d |
|
56 |
|
0red |
|
57 |
51
|
nngt0d |
|
58 |
56 52 57
|
ltled |
|
59 |
50 52 55 58
|
mulge0d |
|
60 |
59
|
adantlr |
|
61 |
|
fveq2 |
|
62 |
|
id |
|
63 |
61 62
|
oveq12d |
|
64 |
|
simpr |
|
65 |
46 54 60 63 64
|
fsumge1 |
|
66 |
65
|
adantlr |
|
67 |
|
eldif |
|
68 |
|
nndiffz1 |
|
69 |
68
|
eleq2d |
|
70 |
19 69
|
syl |
|
71 |
70
|
pm5.32i |
|
72 |
1 2
|
eulerpartlems |
|
73 |
71 72
|
sylbi |
|
74 |
73
|
oveq1d |
|
75 |
|
simpr |
|
76 |
75
|
eldifad |
|
77 |
76
|
nncnd |
|
78 |
77
|
mul02d |
|
79 |
74 78
|
eqtrd |
|
80 |
|
fzfid |
|
81 |
80 53 59
|
fsumge0 |
|
82 |
81
|
adantr |
|
83 |
79 82
|
eqbrtrd |
|
84 |
67 83
|
sylan2br |
|
85 |
84
|
anassrs |
|
86 |
66 85
|
pm2.61dan |
|
87 |
1 2
|
eulerpartlemsv3 |
|
88 |
87
|
adantr |
|
89 |
86 88
|
breqtrrd |
|
90 |
89
|
adantrr |
|
91 |
11 17 21 45 90
|
letrd |
|