Metamath Proof Explorer


Theorem eulerpartlemgv

Description: Lemma for eulerpart : value of the function G . (Contributed by Thierry Arnoux, 13-Nov-2017)

Ref Expression
Hypotheses eulerpart.p P = f 0 | f -1 Fin k f k k = N
eulerpart.o O = g P | n g -1 ¬ 2 n
eulerpart.d D = g P | n g n 1
eulerpart.j J = z | ¬ 2 z
eulerpart.f F = x J , y 0 2 y x
eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
eulerpart.m M = r H x y | x J y r x
eulerpart.r R = f | f -1 Fin
eulerpart.t T = f 0 | f -1 J
eulerpart.g G = o T R 𝟙 F M bits o J
Assertion eulerpartlemgv A T R G A = 𝟙 F M bits A J

Proof

Step Hyp Ref Expression
1 eulerpart.p P = f 0 | f -1 Fin k f k k = N
2 eulerpart.o O = g P | n g -1 ¬ 2 n
3 eulerpart.d D = g P | n g n 1
4 eulerpart.j J = z | ¬ 2 z
5 eulerpart.f F = x J , y 0 2 y x
6 eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
7 eulerpart.m M = r H x y | x J y r x
8 eulerpart.r R = f | f -1 Fin
9 eulerpart.t T = f 0 | f -1 J
10 eulerpart.g G = o T R 𝟙 F M bits o J
11 reseq1 o = A o J = A J
12 11 coeq2d o = A bits o J = bits A J
13 12 fveq2d o = A M bits o J = M bits A J
14 13 imaeq2d o = A F M bits o J = F M bits A J
15 14 fveq2d o = A 𝟙 F M bits o J = 𝟙 F M bits A J
16 fvex 𝟙 F M bits A J V
17 15 10 16 fvmpt A T R G A = 𝟙 F M bits A J